论文标题
大量MIMO CSI反馈的多任务深神经网络
Multi-task Deep Neural Networks for Massive MIMO CSI Feedback
论文作者
论文摘要
深度学习已被广泛应用于频划分双工(FDD)中的通道状态信息(CSI)反馈。对于反馈模型的典型监督培训,几乎无法满足大量特定于任务标记的数据的要求,并且在多种情况下,模型的巨大培训成本和模型的存储使用是用于模型应用的障碍。在这封信中,提出了一种基于多任务学习的方法,以提高反馈网络的可行性。进一步提出了一个编码者共享的反馈体系结构和相应的培训计划,以促进多任务学习方法的实施。实验结果表明,提出的多任务学习方法可以实现全面的反馈绩效,而反馈模型的培训成本和存储使用情况大大降低。
Deep learning has been widely applied for the channel state information (CSI) feedback in frequency division duplexing (FDD) massive multiple-input multiple-output (MIMO) system. For the typical supervised training of the feedback model, the requirements of large amounts of task-specific labeled data can hardly be satisfied, and the huge training costs and storage usage of the model in multiple scenarios are hindrance for model application. In this letter, a multi-task learning-based approach is proposed to improve the feasibility of the feedback network. An encoder-shared feedback architecture and the corresponding training scheme are further proposed to facilitate the implementation of the multi-task learning approach. The experimental results indicate that the proposed multi-task learning approach can achieve comprehensive feedback performance with considerable reduction of training cost and storage usage of the feedback model.