论文标题

生成3D动画管道:自动化面部重新定位工作流程

Generative 3D Animation Pipelines: Automating Facial Retargeting Workflows

论文作者

Girbig, Julius, Ou, Changkun, Rothe, Sylvia

论文摘要

3D行业的设计工具虽然强大,但在为视觉效果带来创意的想法时,仍然乏味和劳动力密集。在该职位论文中,我们讨论了臭名昭著的生成合成媒体如何使用并嵌入到常见的复杂3D工作流中,以减少3D模型编辑,材料设计和角色动画等领域的用户工作负载。作为案例讨论,我们还制定了一种工具来解决角色动画中的重新定位问题。尽管Deepfakes本身已经获得了负面的公众形象,但我们与现场专家的访谈的结果在使用DeepFake算法的工具方面出乎意料的是积极的。最后,我们还讨论了我们的经验和观察到的设计实践,以充分利用深层效果,包括我们如何直接通过设计来避免潜在的滥用,这种设计如何改变用户交互以及随后的开放问题。

Design tools in the 3D industry, while powerful, are still tedious and labor-intensive when it comes to bringing a creative idea for a visual effect to life. In this position paper, we discussed how an infamous generative synthetic media, deepfakes, could be of use and embedded into common sophisticated 3D workflows to reduce user workloads in areas such as 3D model editing, material design, and character animation. As a case discussion, we also prototyped a tool to address the retargeting problem in character animation. Although deepfakes themselves have received a negative public image, the results of our interviews with field experts are unexpectedly positive in regard to our tool that utilizes deepfake algorithms. Lastly, we also discussed our experience and observed design practices to put deepfakes to good use, including how we could avoid potential misuses directly by design, how this design changes user interactions, and subsequent open issues.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源