论文标题

建模在学术引用实践中观察到的性别失衡

Modeling observed gender imbalances in academic citation practices

论文作者

Stiso, Jennifer, Oudyk, Kendra, Bertolero, Maxwell M., Zhou, Dale, Teich, Erin G., Lydon-Staley, David M., Zurn, Perry, Bassett, Dani S.

论文摘要

在多个学科中,具有“女人”的性别的性别与预期的引用率低有关。在某些领域,这种差异主要是由男性的引用驱动,尽管该职业多样化,但随着时间的流逝,差异随着时间的流逝而增加。复杂的社会互动和个人意识形态可能塑造了这些差异。重现经验观察的某些因素的计算模型可以帮助我们了解这些复杂现象背后的一些最小驱动力,因此有助于缓解它们。在这里,我们在学术界介绍了一个基于简单的基于代理的引文实践模型,在该模型中,学者基于三个因素产生引用:它们对该领域的协作网络的估计,如何采样该估算以及他们从其他学者中学习对自己的领域的开放程度。我们表明,在这三个领域中,增加同质性 - 或人们更像自己互动的趋势足以再现引用实践中观察到的偏见。我们发现,在对现场的估计中进行抽样时,会影响总引文率,并开放向新的和陌生的作者学习会影响随着时间的推移这些引用的变化。接下来,我们对现实世界的干预(引文多样性声明)进行建模,从而有可能影响这两个参数。我们确定模型的参数化,该模型与使用引文多样性声明的学者的引文实践相匹配。这种参数化与向许多新作者学习开放的开放性可以导致引用实践,这些实践随着时间的推移是公平且稳定的。最终,我们的工作强调了同质性在塑造引文实践中的重要性,并提供了证据,表明特定行动可以减轻学术界的有偏见的引文实践。

In multiple academic disciplines, having a perceived gender of `woman' is associated with a lower than expected rate of citations. In some fields, that disparity is driven primarily by the citations of men and is increasing over time despite increasing diversification of the profession. It is likely that complex social interactions and individual ideologies shape these disparities. Computational models of select factors that reproduce empirical observations can help us understand some of the minimal driving forces behind these complex phenomena and therefore aid in their mitigation. Here, we present a simple agent-based model of citation practices within academia, in which academics generate citations based on three factors: their estimate of the collaborative network of the field, how they sample that estimate, and how open they are to learning about their field from other academics. We show that increasing homophily -- or the tendency of people to interact with others more like themselves -- in these three domains is sufficient to reproduce observed biases in citation practices. We find that homophily in sampling an estimate of the field influences total citation rates, and openness to learning from new and unfamiliar authors influences the change in those citations over time. We next model a real-world intervention -- the citation diversity statement -- which has the potential to influence both of these parameters. We determine a parameterization of our model that matches the citation practices of academics who use the citation diversity statement. This parameterization paired with an openness to learning from many new authors can result in citation practices that are equitable and stable over time. Ultimately, our work underscores the importance of homophily in shaping citation practices and provides evidence that specific actions may mitigate biased citation practices in academia.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源