论文标题

自我估计的坦(Stan):在物理知识的神经网络中更快的收敛性和更好的概括

Self-scalable Tanh (Stan): Faster Convergence and Better Generalization in Physics-informed Neural Networks

论文作者

Gnanasambandam, Raghav, Shen, Bo, Chung, Jihoon, Yue, Xubo, Zhenyu, Kong

论文摘要

物理知识的神经网络(PINNS)在工程和科学文献中引起了人们的关注,以解决一系列具有天气建模,医疗保健,制造业等应用的微分方程。差可伸缩性是利用Pinns来解决许多现实世界问题的障碍之一。为了解决这个问题,提出了针对PINN的自我量表的Tanh(Stan)激活函数。提出的Stan函数是平滑的,不饱和的,并且具有可训练的参数。在训练过程中,它可以轻松地流动梯度来计算所需的导数,并启用输入输出映射的系统缩放。从理论上讲,使用梯度下降算法时,具有拟议Stan函数的PINN没有伪造的固定点。拟议的Stan对许多涉及一般回归问题的数值研究进行了测试。随后,它用于解决多个正向问题,涉及二阶导数和多个维度,以及一个反问题,其中通过热传导数据预测了杆的热扩散率。这些案例研究从经验上确定,与文献中现有的激活函数相比,Stan激活函数可以实现更好的训练和更准确的预测。

Physics-informed Neural Networks (PINNs) are gaining attention in the engineering and scientific literature for solving a range of differential equations with applications in weather modeling, healthcare, manufacturing, etc. Poor scalability is one of the barriers to utilizing PINNs for many real-world problems. To address this, a Self-scalable tanh (Stan) activation function is proposed for the PINNs. The proposed Stan function is smooth, non-saturating, and has a trainable parameter. During training, it can allow easy flow of gradients to compute the required derivatives and also enable systematic scaling of the input-output mapping. It is shown theoretically that the PINNs with the proposed Stan function have no spurious stationary points when using gradient descent algorithms. The proposed Stan is tested on a number of numerical studies involving general regression problems. It is subsequently used for solving multiple forward problems, which involve second-order derivatives and multiple dimensions, and an inverse problem where the thermal diffusivity of a rod is predicted with heat conduction data. These case studies establish empirically that the Stan activation function can achieve better training and more accurate predictions than the existing activation functions in the literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源