论文标题

混沌系统的拓扑同步

Topological synchronization of chaotic systems

论文作者

Lahav, Nir, Sendina-Nadal, Irene, Hens, Chittaranjan, Ksherim, Baruch, Barzel, Baruch, Cohen, Reuven, Boccaletti, Stefano

论文摘要

混乱的动力学通常以奇怪的吸引子与分形或多重结构的形式出现。另一方面,混乱的同步本质上是一种独特的新兴自组织现象。从经典上讲,同步以宏观参数(例如Lyapunov指数的光谱)为特征。然而,最近,我们尝试了同步的显微镜描述,称为拓扑同步,并表明混乱的同步实际上是一个连续的过程,该过程始于吸引子的低密度区域。在这里,我们通过转移拓扑同步的描述性水平来解释访问者的吸引者的多重性质,从而分析了两种新兴现象之间的关系。也就是说,我们测量系统的广义维度,并在提高耦合强度的同时监视其变化。我们表明,在相空间中拓扑调整的逐步过程中,两个耦合振荡器的每个奇怪吸引子的多型结构连续收敛,采取相似的形式,直到随之而来的完全拓扑同步为止。根据我们的结果,混乱的同步在各种系统中具有特定的特征,从连续系统和离散地图到高维系统:同步从吸引子的稀疏区域启动,并且它创建了我们称为拉链效应的东西,在系统的多型结构中是一种独特的模式,揭示了微观构建的构建过程。因此,拓扑同步提供了混乱同步的更详细的微观描述,即使在高不匹配参数的情况下,也揭示了有关该过程的新信息。

A chaotic dynamics is typically characterized by the emergence of strange attractors with their fractal or multifractal structure. On the other hand, chaotic synchronization is a unique emergent self-organization phenomenon in nature. Classically, synchronization was characterized in terms of macroscopic parameters, such as the spectrum of Lyapunov exponents. Recently, however, we attempted a microscopic description of synchronization, called topological synchronization, and showed that chaotic synchronization is, in fact, a continuous process that starts in low-density areas of the attractor. Here we analyze the relation between the two emergent phenomena by shifting the descriptive level of topological synchronization to account for the multifractal nature of the visited attractors. Namely, we measure the generalized dimension of the system and monitor how it changes while increasing the coupling strength. We show that during the gradual process of topological adjustment in phase space, the multifractal structures of each strange attractor of the two coupled oscillators continuously converge, taking a similar form, until complete topological synchronization ensues. According to our results, chaotic synchronization has a specific trait in various systems, from continuous systems and discrete maps to high dimensional systems: synchronization initiates from the sparse areas of the attractor, and it creates what we termed as the zipper effect, a distinctive pattern in the multifractal structure of the system that reveals the microscopic buildup of the synchronization process. Topological synchronization offers, therefore, a more detailed microscopic description of chaotic synchronization and reveals new information about the process even in cases of high mismatch parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源