论文标题
McMillan地图和非线性Twiss参数
McMillan map and nonlinear Twiss parameters
论文作者
论文摘要
在本文中,我们考虑了两个动态系统:McMillan Sextupole和Octupole可集成的映射最初由Edwin McMillan引入;第二个也称为规范的麦克米兰地图。它们俩都是最简单的对称麦克米兰地图,只有一个内在参数,即固定点的雅各比式的痕迹。尽管这些动态系统具有许多应用,并且用于数学和物理的许多领域,但尚未描述其某些动力学特性。我们满足了差距,并提供了所有稳定轨迹的完整描述,包括不变曲线的参数化,Pioncaré旋转编号和规范动作角度变量。 在第二部分中,我们将这些地图与McMillan-Turaev形式的一般混沌图相关联。我们表明,McMillan Sextupole和Octupole映射是固定点周围动力学的一阶近似值,其方式与线性映射和二次不变式(加速器物理学中的Courant-Snyder不变性)类似的方式是零点近似值(称为线性化)。最后,我们提出了非线性twiss参数的新形式主义,这些形式符合旋转数与振幅的函数的依赖性,与例如与振幅无关的加速器物理学中使用的Betatron相位前进。特别是在加速器物理学中应用的这种新形式主义能够预测扁平光束的1-ST,2-ND,3-RD和4-阶谐解附近的动力孔径,这对于梁注入/提取至关重要。
In this article we consider two dynamical systems: the McMillan sextupole and octupole integrable mappings originally introduced by Edwin McMillan; the second one is also known as canonical McMillan map. Both of them are simplest symmetric McMillan maps with only one intrinsic parameter, the trace of the Jacobian at the fixed point. While these dynamical systems have numerous of applications and are used in many areas of math and physics, some of their dynamical properties have not been described yet. We fulfill the gap and provide complete description of all stable trajectories including parametrization of invariant curves, Pioncaré rotation numbers and canonical action-angle variables. In the second part we relate these maps with general chaotic map in McMillan-Turaev form. We show that McMillan sextupole and octupole mappings are first order approximations of dynamics around the fixed point, in a similar way as linear map and quadratic invariant (Courant-Snyder invariant in accelerator physics) is the zeroth order approximation (known as linearization). Finally we suggest the new formalism of nonlinear Twiss parameters which incorporate dependence of rotation number as a function of amplitude, in contrast to e.g. betatron phase advance used in accelerator physics which is independent of amplitude. Specifically in application to accelerator physics this new formalism is capable of predicting dynamical aperture around 1-st, 2-nd, 3-rd and 4-th order resonances for flat beams, which is critical for beam injection/extraction.