论文标题

全球控制,在本地理解:一个全球到本地的分层图网络,用于情感支持对话

Control Globally, Understand Locally: A Global-to-Local Hierarchical Graph Network for Emotional Support Conversation

论文作者

Peng, Wei, Hu, Yue, Xing, Luxi, Xie, Yuqiang, Sun, Yajing, Li, Yunpeng

论文摘要

情感支持对话旨在减少寻求帮助者的情绪困扰,这是一项新的挑战。它要求系统探索寻求帮助者的情绪困扰的原因,并了解他们提供支持反应的心理意图。但是,现有方法主要集中于连续的上下文信息,忽略了与全球原因和对话背后的局部心理意图的等级关系,从而导致情感支持的能力较弱。在本文中,我们提出了一个全局到本地的分层图网络,以捕获多源信息(全局原因,本地意图和对话框历史记录)和模型之间的层次关系,该信息由多源编码器,层次图形推理器和全球辅助解码器组成。此外,新颖的培训目标旨在监视全球原因的语义信息。关于情绪支持对话数据集Esconv的实验结果证实,拟议的GLHG已在自动和人类评估方面取得了最新的表现。该代码将在此处发布\ footNote {\ small {〜https://github.com/pengwei-iie/glhg}}。

Emotional support conversation aims at reducing the emotional distress of the help-seeker, which is a new and challenging task. It requires the system to explore the cause of help-seeker's emotional distress and understand their psychological intention to provide supportive responses. However, existing methods mainly focus on the sequential contextual information, ignoring the hierarchical relationships with the global cause and local psychological intention behind conversations, thus leads to a weak ability of emotional support. In this paper, we propose a Global-to-Local Hierarchical Graph Network to capture the multi-source information (global cause, local intentions and dialog history) and model hierarchical relationships between them, which consists of a multi-source encoder, a hierarchical graph reasoner, and a global-guide decoder. Furthermore, a novel training objective is designed to monitor semantic information of the global cause. Experimental results on the emotional support conversation dataset, ESConv, confirm that the proposed GLHG has achieved the state-of-the-art performance on the automatic and human evaluations. The code will be released in here \footnote{\small{~https://github.com/pengwei-iie/GLHG}}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源