论文标题
在指数空间中不可压缩的Euler方程的弱唯一性和消失的粘度
Weak-strong uniqueness and vanishing viscosity for incompressible Euler equations in exponential spaces
论文作者
论文摘要
在可接受的弱解决方案中,我们证明了不可压缩的欧拉方程式的弱唯一性,假设梯度的对称部分属于$ l^1 _ {\ rm loc}([0,+\ iffty) d}))$,其中$ l^{\ rm exp} $表示指数积分函数的orlicz空间。此外,在对欧拉系统的极限解决方案的相同假设下,我们获得了消失的粘度leray-hopf弱解决方案的收敛性。
In the class of admissible weak solutions, we prove a weak-strong uniqueness result for the incompressible Euler equations assuming that the symmetric part of the gradient belongs to $L^1_{\rm loc}([0,+\infty);L^{\rm exp}(\mathbb{R}^d;\mathbb{R}^{d\times d}))$, where $L^{\rm exp}$ denotes the Orlicz space of exponentially integrable functions. Moreover, under the same assumptions on the limit solution to the Euler system, we obtain the convergence of vanishing-viscosity Leray--Hopf weak solutions of the Navier--Stokes equations.