论文标题
跨摄像机轨迹可帮助人员在相机网络中检索
Cross-Camera Trajectories Help Person Retrieval in a Camera Network
论文作者
论文摘要
我们关注的是从非重叠摄像机网络捕获的多个视频中检索查询人员。现有方法通常依赖于纯粹的视觉匹配或考虑时间约束,但忽略了相机网络的空间信息。为了解决这个问题,我们提出了一个基于跨相机轨迹生成的行人检索框架,该框架同时集成了时间和空间信息。为了获得行人轨迹,我们提出了一种新型的跨相机时空模型,该模型整合了行人的步行习惯和相机之间的路径布局,以形成关节概率分布。可以使用稀疏采样的行人数据来指定相机网络之间的这种时空模型。基于时空模型,可以通过条件随机场模型提取跨相机轨迹,并通过受限的非负矩阵分解进一步优化。最后,提出了一种轨迹重新排列技术,以改善行人检索结果。为了验证我们方法的有效性,我们在实际的监视场景中构建了第一个跨相机行人轨迹数据集,即人轨迹数据集。广泛的实验验证了所提出方法的有效性和鲁棒性。
We are concerned with retrieving a query person from multiple videos captured by a non-overlapping camera network. Existing methods often rely on purely visual matching or consider temporal constraints but ignore the spatial information of the camera network. To address this issue, we propose a pedestrian retrieval framework based on cross-camera trajectory generation, which integrates both temporal and spatial information. To obtain pedestrian trajectories, we propose a novel cross-camera spatio-temporal model that integrates pedestrians' walking habits and the path layout between cameras to form a joint probability distribution. Such a spatio-temporal model among a camera network can be specified using sparsely sampled pedestrian data. Based on the spatio-temporal model, cross-camera trajectories can be extracted by the conditional random field model and further optimized by restricted non-negative matrix factorization. Finally, a trajectory re-ranking technique is proposed to improve the pedestrian retrieval results. To verify the effectiveness of our method, we construct the first cross-camera pedestrian trajectory dataset, the Person Trajectory Dataset, in real surveillance scenarios. Extensive experiments verify the effectiveness and robustness of the proposed method.