论文标题

基于个性化Pagerank的分散内容搜索的图形扩散方案

A Graph Diffusion Scheme for Decentralized Content Search based on Personalized PageRank

论文作者

Giatsoglou, Nikolaos, Krasanakis, Emmanouil, Papadopoulos, Symeon, Kompatsiaris, Ioannis

论文摘要

权力下放是未来互联网的关键特征。但是,最先进的分散技术(例如分布式哈希表和区块链)缺少有效的搜索算法。这是令人惊讶的,因为已经在早期的点对点(P2P)文献中对分散搜索进行了广泛的研究。在这项工作中,我们在P2P网络中采用了一个新的前景进行分散搜索,该搜索受到密集信息检索和图形信号处理的进步的启发。特别是,我们根据其存储的文档生成P2P节点的潜在表示,并使用图形过滤器(例如个性化的Pagerank)将其扩散到网络的其余部分。然后,我们使用扩散的表示形式指导搜索查询有关相关内容。我们的初步方法成功地在附近的节点中找到相关文档,但是随着存储文档的数量,准确性急剧下降,强调了需要更复杂的技术。

Decentralization is emerging as a key feature of the future Internet. However, effective algorithms for search are missing from state-of-the-art decentralized technologies, such as distributed hash tables and blockchain. This is surprising, since decentralized search has been studied extensively in earlier peer-to-peer (P2P) literature. In this work, we adopt a fresh outlook for decentralized search in P2P networks that is inspired by advancements in dense information retrieval and graph signal processing. In particular, we generate latent representations of P2P nodes based on their stored documents and diffuse them to the rest of the network with graph filters, such as personalized PageRank. We then use the diffused representations to guide search queries towards relevant content. Our preliminary approach is successful in locating relevant documents in nearby nodes but the accuracy declines sharply with the number of stored documents, highlighting the need for more sophisticated techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源