论文标题

Feynman积分的Macaulay矩阵:线性关系和交叉数字

Macaulay Matrix for Feynman Integrals: Linear Relations and Intersection Numbers

论文作者

Chestnov, Vsevolod, Gasparotto, Federico, Mandal, Manoj K., Mastrolia, Pierpaolo, Matsubara-Heo, Saiei J., Munch, Henrik J., Takayama, Nobuki

论文摘要

我们详细介绍了Gel'Fand-Kapranov-Zelevinsky系统,扭曲的同胞组的DE RHAM理论和Feynman积分方程。我们提出了一种新型,更有效的算法来计算曲线矩阵,该矩阵用于得出微分方程的Pfaffian系统。然后,使用PFAFFIAN矩阵来获得$ {\ cal a} $ - 超几何(Euler)积分和Feynman积分的线性关系,通过复发关系和通过交叉数字进行预测。

We elaborate on the connection between Gel'fand-Kapranov-Zelevinsky systems, de Rham theory for twisted cohomology groups, and Pfaffian equations for Feynman integrals. We propose a novel, more efficient algorithm to compute Macaulay matrices, which are used to derive Pfaffian systems of differential equations. The Pfaffian matrices are then employed to obtain linear relations for ${\cal A}$-hypergeometric (Euler) integrals and Feynman integrals, through recurrence relations and through projections by intersection numbers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源