论文标题
部分可观测时空混沌系统的无模型预测
DEPFET Active Pixel Sensors
论文作者
论文摘要
DepFet像素的数组是实现活动像素传感器的几个概念之一。与PNCCD和SDD探测器类似,通常由0.45 mm厚的硅传感器完全耗尽了侧向耗竭的原理。此外,它们具有反向释放的探测器的共同点,这允许超薄和均匀的光子入口窗口。这可以在低能量下实现相对较高的量子效率,对于1 KEV和10 KEV之间的光子能量,可实现接近100%。 DEPFET传感器的转向是由所谓的切换器ASIC启用的,并且读数由例如。 Veritas asic。该配置可以使每行几微秒的读数时间为几微秒。这导致在滚动快门模式下的512 x 512像素阵列的几毫秒的全帧读数时间。然后,读取噪声通常为三个电子等效噪声电荷RMS。 DepFet探测器可以特别用于从0.2 keV到20 keV的能带中的光谱。例如,以6 keV的能量实现了约130 eV fwhm的能量分辨率,该能量接近Fano噪声给出的理论极限。 DepFET概念可以可行,直至一厘米,几十微米的像素尺寸是可行的。
An array of DEPFET pixels is one of several concepts to implement an active pixel sensor. Similar to PNCCD and SDD detectors, the typically 0.45 mm thick silicon sensor is fully depleted by the principle of sideward depletion. They have furthermore in common to be back-illuminated detectors, which allows for ultra-thin and homogeneous photon entrance windows. This enables relatively high quantum efficiencies at low energies and close to 100% for photon energies between 1 keV and 10 keV. Steering of the DEPFET sensor is enabled by a so-called Switcher ASIC and readout is performed by e.g. a VERITAS ASIC. The configuration enables a readout time of a few microseconds per row. This results in full frame readout times of a few milliseconds for a 512 x 512 pixel array in a rolling shutter mode. The read noise is then typically three electrons equivalent noise charge RMS. DEPFET detectors can be applied in particular for spectroscopy in the energy band from 0.2 keV to 20 keV. For example, an energy resolution of about 130 eV FWHM is achieved at an energy of 6 keV which is close to the theoretical limit given by Fano noise. Pixel sizes of a few tens of microns up to a centimetre are feasible by the DEPFET concept.