论文标题
基塔夫链带有分数扭曲
Kitaev Chain with a Fractional Twist
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The topological non-triviality of insulating phases of matter is by now well understood through topological K-theory where the indices of the Dirac operators are assembled into topological classes. We consider in the context of the Kitaev chain a notion of a generalized Dirac operator where the associated Clifford algebra is centrally extended. We demonstrate that the central extension is achieved via taking rational operator powers of Pauli matrices that appear in the corresponding BdG Hamiltonian. Doing so introduces a pseudo-metallic component to the topological phase diagram within which the winding number is valued in $\mathbb Q$. We find that this phase hosts a mode that remains extended in the presence of weak disorder, motivating a topological interpretation of a non-integral winding number. We remark that this is in correspondence with Ref.[J. Differential Geom. 74(2):265-292] demonstrating that projective Dirac operators defined in the absence of spin$^\mathbb C$ structure have rational indices.