论文标题

边际反事实生存曲线的近端因果推断

Proximal Causal Inference for Marginal Counterfactual Survival Curves

论文作者

Ying, Andrew, Cui, Yifan, Tchetgen, Eric J. Tchetgen

论文摘要

对比跨处理臂的边际反事实生存曲线是一种有效而流行的方法,用于推断干预措施对右审查的活动时间结果的因果关系。在观测设置中绘制这种推论的一个关键挑战是可能存在未衡量的混杂,这可能使最常用的方法无效,而这些方法没有假定隐藏的混杂偏见。在本文中,我们扩展了最近提出的Miao等人最近提出的近端因果推理框架,而不是进行标准的没有标准的混杂假设。 (2018),Tchetgen等。 (2020),Cui等。 (2020)通过利用观察到的协变量作为未衡量的混杂因素的不完美代理来获得因果生存对比的非参数鉴定。具体而言,我们开发了近端的反可能加权(PIPW)估计量,标准IPW的近端类似物,该估计值允许观察到的数据分布用于事实发生的时间结果。 PIPW估计依赖于所谓的处理桥梁功能的参数模型,该桥梁功能将处理过程与混淆代理有关。结果,PIPW可能对模型错误指定敏感。为了提高鲁棒性和效率,我们还提出了一个近端双重稳健估计器,并建立了两个估计量的一致性和渐近正态性。我们进行了广泛的模拟,以检查估计量的有限样本性能,并将提出的方法应用于评估重症患者重症监护病房中右心导管插入术的有效性的研究。

Contrasting marginal counterfactual survival curves across treatment arms is an effective and popular approach for inferring the causal effect of an intervention on a right-censored time-to-event outcome. A key challenge to drawing such inferences in observational settings is the possible existence of unmeasured confounding, which may invalidate most commonly used methods that assume no hidden confounding bias. In this paper, rather than making the standard no unmeasured confounding assumption, we extend the recently proposed proximal causal inference framework of Miao et al. (2018), Tchetgen et al. (2020), Cui et al. (2020) to obtain nonparametric identification of a causal survival contrast by leveraging observed covariates as imperfect proxies of unmeasured confounders. Specifically, we develop a proximal inverse probability-weighted (PIPW) estimator, the proximal analog of standard IPW, which allows the observed data distribution for the time-to-event outcome to remain completely unrestricted. PIPW estimation relies on a parametric model for a so-called treatment confounding bridge function relating the treatment process to confounding proxies. As a result, PIPW might be sensitive to model misspecification. To improve robustness and efficiency, we also propose a proximal doubly robust estimator and establish uniform consistency and asymptotic normality of both estimators. We conduct extensive simulations to examine the finite sample performance of our estimators, and proposed methods are applied to a study evaluating the effectiveness of right heart catheterization in the intensive care unit of critically ill patients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源