论文标题

自动驾驶的控制感知的预测目标

Control-Aware Prediction Objectives for Autonomous Driving

论文作者

McAllister, Rowan, Wulfe, Blake, Mercat, Jean, Ellis, Logan, Levine, Sergey, Gaidon, Adrien

论文摘要

通常将自动驾驶汽车软件作为单个组件(例如,感知,预测和计划)的模块化管道结构,以帮助将问题分开为可解释的子任务。即使是端到端培训,每个模块都有自己的一组目标,用于安全保证,样本效率,正则化或解释性。但是,中间目标并不总是与整体系统性能保持一致。例如,优化轨迹预测模块的可能性可能更多地集中在易于预测的代理上,而不是安全至关重要或稀有行为(例如JayWalking)。在本文中,我们提出了控制感知的预测目标(CAPO),以评估预测对控制的下游效果,而无需规划师是可区分的。我们提出了两种重要的权重,可以加权预测可能性:一种使用代理之间的注意力模型,另一种是基于控制变化的方法,而在交换预测的轨迹为地面真相轨迹。在实验上,我们表明我们的目标改善了使用CARLA模拟器在郊区驾驶场景中的整体系统性能。

Autonomous vehicle software is typically structured as a modular pipeline of individual components (e.g., perception, prediction, and planning) to help separate concerns into interpretable sub-tasks. Even when end-to-end training is possible, each module has its own set of objectives used for safety assurance, sample efficiency, regularization, or interpretability. However, intermediate objectives do not always align with overall system performance. For example, optimizing the likelihood of a trajectory prediction module might focus more on easy-to-predict agents than safety-critical or rare behaviors (e.g., jaywalking). In this paper, we present control-aware prediction objectives (CAPOs), to evaluate the downstream effect of predictions on control without requiring the planner be differentiable. We propose two types of importance weights that weight the predictive likelihood: one using an attention model between agents, and another based on control variation when exchanging predicted trajectories for ground truth trajectories. Experimentally, we show our objectives improve overall system performance in suburban driving scenarios using the CARLA simulator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源