论文标题

无线网络中的语义信息恢复

Semantic Information Recovery in Wireless Networks

论文作者

Beck, Edgar, Bockelmann, Carsten, Dekorsy, Armin

论文摘要

由机器学习(ML)工具在无线通信中的最新成功的激励之中,韦弗(Weaver)从1949年开始的语义交流想法引起了人们的关注。它旨在传输消息的含义,即语义,而不是其确切版本,从而可以节省信息速率,从而破坏了香农的经典设计范式。在这项工作中,我们扩展了Basu等人的基本方法。用于对Markov完整的Markov链进行建模语义。因此,我们通过隐藏的随机变量对语义进行建模,并将语义通信任务定义为通过通信通道的数据降低和可靠的消息传输,从而最好地保留语义。我们将这项任务作为端到端信息瓶颈问题进行,从​​而允许压缩同时保留相关信息。作为解决方案方法,我们提出了基于ML的语义通信系统SINFONY,并将其用于分布式多点场景:Sinfony将在不同发件人观察到的多个消息背后的含义传达给单个接收器以进行语义恢复。我们通过处理图像作为消息示例来分析Sinfony。数值结果显示,与经典设计的通信系统相比,巨大的速率归一化SNR转移到20 dB。

Motivated by the recent success of Machine Learning (ML) tools in wireless communications, the idea of semantic communication by Weaver from 1949 has gained attention. It breaks with Shannon's classic design paradigm by aiming to transmit the meaning of a message, i.e., semantics, rather than its exact version and thus allows for savings in information rate. In this work, we extend the fundamental approach from Basu et al. for modeling semantics to the complete communications Markov chain. Thus, we model semantics by means of hidden random variables and define the semantic communication task as the data-reduced and reliable transmission of messages over a communication channel such that semantics is best preserved. We cast this task as an end-to-end Information Bottleneck problem, allowing for compression while preserving relevant information most. As a solution approach, we propose the ML-based semantic communication system SINFONY and use it for a distributed multipoint scenario: SINFONY communicates the meaning behind multiple messages that are observed at different senders to a single receiver for semantic recovery. We analyze SINFONY by processing images as message examples. Numerical results reveal a tremendous rate-normalized SNR shift up to 20 dB compared to classically designed communication systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源