论文标题

使用深图像先验的列表模式PET图像重建

List-Mode PET Image Reconstruction Using Deep Image Prior

论文作者

Ote, Kibo, Hashimoto, Fumio, Onishi, Yuya, Isobe, Takashi, Ouchi, Yasuomi

论文摘要

列表模式正电子发射断层扫描(PET)图像重建是具有许多响应线和其他信息(例如飞行时间和交流时间)的PET扫描仪的重要工具。深度学习是提高PET图像重建质量的一种可能解决方案。但是,深度学习技术在列表模式PET图像重建中的应用尚未进行,因为列表数据是一系列位代码,不适合通过卷积神经网络(CNN)处理。在这项研究中,我们使用一种无​​监督的CNN提出了一种新型的列表模式PET图像重建方法,称为Deep Image Prior(DIP),这是第一个整合列表模式PET图像重建和CNN的试验。拟议的列表模式浸入重建(LM-DIPRECON)方法或者使用交替的乘数方法交替的方向方法,迭代了正规列表模式动态行动最大行动最大似然算法(LM-drama)和磁共振成像调节条件倾角(MRD-DIP)。我们使用仿真和临床数据评估了LM二极管,并且比LM-drama,MR-DIP和基于Sinogram的Diprecon方法在对比度和噪声之间实现了更清晰的图像和更好的权衡曲线。这些结果表明,LM-DiPrecon对于有限的事件的定量PET成像很有用,同时保持准确的原始数据信息。此外,由于列表数据的时间信息比动态曲线图更精细,因此列表模式深图像事先重建有望可用于4D PET成像和运动校正。

List-mode positron emission tomography (PET) image reconstruction is an important tool for PET scanners with many lines-of-response and additional information such as time-of-flight and depth-of-interaction. Deep learning is one possible solution to enhance the quality of PET image reconstruction. However, the application of deep learning techniques to list-mode PET image reconstruction has not been progressed because list data is a sequence of bit codes and unsuitable for processing by convolutional neural networks (CNN). In this study, we propose a novel list-mode PET image reconstruction method using an unsupervised CNN called deep image prior (DIP) which is the first trial to integrate list-mode PET image reconstruction and CNN. The proposed list-mode DIP reconstruction (LM-DIPRecon) method alternatively iterates the regularized list-mode dynamic row action maximum likelihood algorithm (LM-DRAMA) and magnetic resonance imaging conditioned DIP (MR-DIP) using an alternating direction method of multipliers. We evaluated LM-DIPRecon using both simulation and clinical data, and it achieved sharper images and better tradeoff curves between contrast and noise than the LM-DRAMA, MR-DIP and sinogram-based DIPRecon methods. These results indicated that the LM-DIPRecon is useful for quantitative PET imaging with limited events while keeping accurate raw data information. In addition, as list data has finer temporal information than dynamic sinograms, list-mode deep image prior reconstruction is expected to be useful for 4D PET imaging and motion correction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源