论文标题
对称仿射立方表面的积分点
Integral points on symmetric affine cubic surfaces
论文作者
论文摘要
我们表明,如果$ f(u)\ in \ mathbb {z} [u] $是一种一元立方多项式,那么对于所有\ Mathbb {z} $有限的$ n \ in \ mathbb {z} $ affine cutic cutic cubic surface $ f(u_ {1})+f(u_ {1}) \ Mathbb {a}^{3} _ {\ Mathbb {z}} $对HASSE原理没有积分的Brauer-Manin障碍物。
We show that if $f(u)\in \mathbb{Z}[u]$ is a monic cubic polynomial, then for all but finitely many $n\in \mathbb{Z}$ the affine cubic surface $f(u_{1})+f(u_{2})+f(u_{3})=n \subset \mathbb{A}^{3}_{\mathbb{Z}}$ has no integral Brauer-Manin obstruction to the Hasse principle.