论文标题
不均匀超图的非式轨道光谱聚类
Nonbacktracking spectral clustering of nonuniform hypergraphs
论文作者
论文摘要
光谱方法通过图矩阵上的特征向量计算在图中提供了一个可拖动的全局框架。 HyperGraph数据在任意大小的边缘上相互作用,对矩阵表示构成了挑战,因此对光谱聚类构成了挑战。我们研究了基于超图非背部轨道操作员的非均匀超图的光谱聚类。在回顾了该操作员及其基本属性的定义之后,我们证明了Ihara-Bass类型的定理,该定理允许在较小的矩阵上进行特征帕尔计算,通常可以更快地计算。然后,我们通过线性化信念传播提出了一种交替的算法,用于推理超图随机块模型,该算法涉及使用非背部跟踪操作员再次使用频谱聚类的步骤。我们提供了与该算法相关的证据,这些算法既正式又扩展了几个先前的结果。一般而言,我们对光谱方法的极限和可检测性提出了几种猜想,一般而言,通过对我们研究的操作员的特征材料进行了不接受分析。当不同尺寸的相互作用带有有关群集结构的不同信息时,我们在真实和合成数据中进行实验,这些实验证明了超图方法的益处而不是基于图的实验。
Spectral methods offer a tractable, global framework for clustering in graphs via eigenvector computations on graph matrices. Hypergraph data, in which entities interact on edges of arbitrary size, poses challenges for matrix representations and therefore for spectral clustering. We study spectral clustering for nonuniform hypergraphs based on the hypergraph nonbacktracking operator. After reviewing the definition of this operator and its basic properties, we prove a theorem of Ihara-Bass type which allows eigenpair computations to take place on a smaller matrix, often enabling faster computation. We then propose an alternating algorithm for inference in a hypergraph stochastic blockmodel via linearized belief-propagation which involves a spectral clustering step again using nonbacktracking operators. We provide proofs related to this algorithm that both formalize and extend several previous results. We pose several conjectures about the limits of spectral methods and detectability in hypergraph stochastic blockmodels in general, supporting these with in-expectation analysis of the eigeinpairs of our studied operators. We perform experiments in real and synthetic data that demonstrate the benefits of hypergraph methods over graph-based ones when interactions of different sizes carry different information about cluster structure.