论文标题

Physiogan:培训生理传感器读数的高保真生成模型

PhysioGAN: Training High Fidelity Generative Model for Physiological Sensor Readings

论文作者

Alzantot, Moustafa, Garcia, Luis, Srivastava, Mani

论文摘要

事实证明,诸如变异自动编码器(VAE)和生成对抗网络(GAN)之类的生成模型对于生成统计属性和现实世界数据集的统计属性的生成非常强大,尤其是在图像和自然语言文本的上下文中。然而,直到现在,还没有成功地展示如何应用两种方法来生成有用的生理感觉数据。在这种情况下,最先进的技术仅取得了有限的成功。我们提出了Physiogan,这是一种生成模型,可生成高保真综合生理传感器数据读数。 Physiogan由编码器,解码器和歧视器组成。我们使用两个不同的现实世界数据集对最新技术评估了物理:ECG分类和运动传感器数据集的活动识别。我们将Physiogan与基线模型进行了比较,不仅是班级有条件产生的准确性,还比较了合成数据集的样本多样性和样本新颖性。我们证明,Physiogan通过表明仅根据Physiogan生成的合成数据进行训练的分类模型,其分类精度相对于对实际数据训练的分类模型,其分类精度仅降低了10%和20%,从而生成比其他生成模型更高的样品。此外,我们证明了物理学在创建合理的结果中插入传感器数据的使用。

Generative models such as the variational autoencoder (VAE) and the generative adversarial networks (GAN) have proven to be incredibly powerful for the generation of synthetic data that preserves statistical properties and utility of real-world datasets, especially in the context of image and natural language text. Nevertheless, until now, there has no successful demonstration of how to apply either method for generating useful physiological sensory data. The state-of-the-art techniques in this context have achieved only limited success. We present PHYSIOGAN, a generative model to produce high fidelity synthetic physiological sensor data readings. PHYSIOGAN consists of an encoder, decoder, and a discriminator. We evaluate PHYSIOGAN against the state-of-the-art techniques using two different real-world datasets: ECG classification and activity recognition from motion sensors datasets. We compare PHYSIOGAN to the baseline models not only the accuracy of class conditional generation but also the sample diversity and sample novelty of the synthetic datasets. We prove that PHYSIOGAN generates samples with higher utility than other generative models by showing that classification models trained on only synthetic data generated by PHYSIOGAN have only 10% and 20% decrease in their classification accuracy relative to classification models trained on the real data. Furthermore, we demonstrate the use of PHYSIOGAN for sensor data imputation in creating plausible results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源