论文标题

Galois部分和$ p $ - 添加期映射

Galois sections and $p$-adic period mappings

论文作者

Betts, L. Alexander, Stix, Jakob

论文摘要

令$ k $为一个不包含CM子字段的数字字段。对于任何平滑的投射曲线$ y/k $属$ \ geq2 $,我们证明了Grothendieck部分的“ Selmer”部分的图像在$ k_v $ rational-rational-rational-rational-rational-points $ y(k_v)$中是每个有限的plote $ v $的有限的。这提供了对Grothendieck部分猜想的预测的无条件验证。在证明我们的主要结果的过程中,我们还完善并扩展了劳伦斯和Venkatesh的方法,对显式计算产生了潜在的后果。

Let $K$ be a number field not containing a CM subfield. For any smooth projective curve $Y/K$ of genus $\geq2$, we prove that the image of the "Selmer" part of Grothendieck's section set inside the $K_v$-rational points $Y(K_v)$ is finite for every finite place $v$. This gives an unconditional verification of a prediction of Grothendieck's section conjecture. In the process of proving our main result, we also refine and extend the method of Lawrence and Venkatesh, with potential consequences for explicit computations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源