论文标题
$ \ ell^p $ - $ [0,1] $的对称有限的可表示^p $ - 空格不变空间
Symmetric finite representability of $\ell^p$-spaces in rearrangement invariant spaces on $[0,1]$
论文作者
论文摘要
For a separable rearrangement invariant space $X$ on $[0,1]$ of fundamental type we identify the set of all $p\in [1,\infty]$ such that $\ell^p$ is finitely represented in $X$ in such a way that the unit basis vectors of $\ell^p$ ($c_0$ if $p=\infty$) correspond to pairwise disjoint and equimeasurable functions.这可以将其视为与可分开的重排空间相关的名称为$(0,\ infty)$的纸的随访。
For a separable rearrangement invariant space $X$ on $[0,1]$ of fundamental type we identify the set of all $p\in [1,\infty]$ such that $\ell^p$ is finitely represented in $X$ in such a way that the unit basis vectors of $\ell^p$ ($c_0$ if $p=\infty$) correspond to pairwise disjoint and equimeasurable functions. This can be treated as a follow up of a paper by the first-named author related to separable rearrangement invariant spaces on $(0,\infty)$.