论文标题

$ \ ell^p $ - $ [0,1] $的对称有限的可表示^p $ - 空格不变空间

Symmetric finite representability of $\ell^p$-spaces in rearrangement invariant spaces on $[0,1]$

论文作者

Astashkin, Sergey V., Curbera, Guillermo P.

论文摘要

For a separable rearrangement invariant space $X$ on $[0,1]$ of fundamental type we identify the set of all $p\in [1,\infty]$ such that $\ell^p$ is finitely represented in $X$ in such a way that the unit basis vectors of $\ell^p$ ($c_0$ if $p=\infty$) correspond to pairwise disjoint and equimeasurable functions.这可以将其视为与可分开的重排空间相关的名称为$(0,\ infty)$的纸的随访。

For a separable rearrangement invariant space $X$ on $[0,1]$ of fundamental type we identify the set of all $p\in [1,\infty]$ such that $\ell^p$ is finitely represented in $X$ in such a way that the unit basis vectors of $\ell^p$ ($c_0$ if $p=\infty$) correspond to pairwise disjoint and equimeasurable functions. This can be treated as a follow up of a paper by the first-named author related to separable rearrangement invariant spaces on $(0,\infty)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源