论文标题
使用深度学习方法的直接映射从PET巧合数据到质子剂量和正电子活动
Direct mapping from PET coincidence data to proton-dose and positron activity using a deep learning approach
论文作者
论文摘要
$目标$。在粒子疗法中获得内在剂量分布是一个具有挑战性的问题,需要通过成像算法来利用二级粒子探测器来解决。在这项工作中,我们研究了深度学习方法的实用性,以实现从检测器数据到内在剂量分布的直接映射。 $进近$。我们使用Gate/geant4 10.4模拟工具包进行了蒙特卡洛模拟,以使用用高能量质子照射的人CT Phantom生成数据集,并用紧凑型束内PET成像,以在单次分数($ \ sim $ 2GY)中进行逼真的光束输送。我们开发了一个基于条件生成对抗网络的神经网络模型,以生成以检测器中巧合分布为条件的剂量图。模型性能通过平均相对误差,绝对剂量分数差和Bragg峰位置的变化来评估。 $ $ $ $ $ $ $ $。模型预测的分布的剂量和范围的相对偏差远离了50 MEV和122 MeV之间的单能照射的真实值分别在1%和2%之内。这是使用$ \ mathrm {10^5} $重合在辐照后五分钟获得的。剂量的相对偏差和扩散的bragg峰分布分别在1%和2.6%的不确定性之内。 $意义$。这项研究的一个重要方面是使用适合于粒子治疗中实施的紧凑型检测器的低计数数据直接映射从检测器计数到剂量结构域的方法。将来包括其他先验信息可以进一步扩大我们的模型范围,并将其应用扩展到其他医学成像领域。
$Objective$. Obtaining the intrinsic dose distributions in particle therapy is a challenging problem that needs to be addressed by imaging algorithms to take advantage of secondary particle detectors. In this work, we investigate the utility of deep learning methods for achieving direct mapping from detector data to the intrinsic dose distribution. $Approach$. We performed Monte Carlo simulations using GATE/Geant4 10.4 simulation toolkits to generate a dataset using human CT phantom irradiated with high-energy protons and imaged with compact in-beam PET for realistic beam delivery in a single-fraction ($\sim$2Gy). We developed a neural network model based on conditional generative adversarial networks to generate dose maps conditioned on coincidence distributions in the detector. The model performance is evaluated by the mean relative error, absolute dose fraction difference, and shift in Bragg peak position. $Main$ $results$. The relative deviation in the dose and range of the distributions predicted by the model from the true values for mono-energetic irradiation between 50 MeV and 122 MeV lie within 1% and 2%, respectively. This was achieved using $\mathrm{10^5}$ coincidences acquired five minutes after irradiation. The relative deviation in the dose and range for spread-out Bragg peak distributions were within 1% and 2.6% uncertainties, respectively. $Significance$. An important aspect of this study is the demonstration of a method for direct mapping from detector counts to dose domain using the low count data of compact detectors suited for practical implementation in particle therapy. Including additional prior information in the future can further expand the scope of our model and also extend its application to other areas of medical imaging.