论文标题

使用临床笔记来理解暴力风险预测

Making sense of violence risk predictions using clinical notes

论文作者

Mosteiro, Pablo, Rijcken, Emil, Zervanou, Kalliopi, Kaymak, Uzay, Scheepers, Floortje, Spruit, Marco

论文摘要

精神科机构中的暴力风险评估使干预措施避免了暴力事件。从业人员撰写的临床笔记并在电子健康记录(EHR)中获得的临床注释是很少用于其全部潜力的宝贵资源。先前的研究试图使用此类笔记来评估精神病患者的暴力风险,并且表现可接受。但是,他们没有解释分类为何有效以及如何改进。我们探索两种方法,以更好地了解分类器在临床注释分析的背景下:使用主题模型的随机森林和评估指标的选择。这些方法使我们能够更深刻地了解数据和方法,从而为改进的基于这种理解的模型设定了基础。当评估分类器对新数据的普遍性时,这一点尤其重要,这是一个值得关注的可信赖性问题,这是由于电子格式以新数据的增加而引起的。

Violence risk assessment in psychiatric institutions enables interventions to avoid violence incidents. Clinical notes written by practitioners and available in electronic health records (EHR) are valuable resources that are seldom used to their full potential. Previous studies have attempted to assess violence risk in psychiatric patients using such notes, with acceptable performance. However, they do not explain why classification works and how it can be improved. We explore two methods to better understand the quality of a classifier in the context of clinical note analysis: random forests using topic models, and choice of evaluation metric. These methods allow us to understand both our data and our methodology more profoundly, setting up the groundwork to work on improved models that build upon this understanding. This is particularly important when it comes to the generalizability of evaluated classifiers to new data, a trustworthiness problem that is of great interest due to the increased availability of new data in electronic format.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源