论文标题

zeta功能和$μ^*$ - Zariski对表面

Zeta-function and $μ^*$-Zariski pairs of surfaces

论文作者

Eyral, Christophe, Oka, Mutsuo

论文摘要

一对Zariski表面是$ \ Mathbb {C}^3 $中的一对复杂的多项式函数,它是从经典的Zariski对Zariski对一对投射曲线$ f_0(z_1,z__2,z_3,z_3)= 0 $ f_1和$ f_1和$ f_1(z_1,z_1,z_2,z_2,z_3)= 0 $ a的$ f_1 = 0 $ dy $ dy $ d $ a same term of the form $z_i^{d+m}$ ($m\geq 1$) to both $f_0$ and $f_1$ so that the corresponding affine surfaces of $\mathbb{C}^3$ -- defined by $g_0:=f_0+z_i^{d+m}$ and $g_1:=f_1+z_i^{d+m}$ -- have与其Milnor纤维相关的单片的孤立奇异性和相同的Zeta功能(尤其是$ g_0 $和$ g_1 $具有相同的milnor编号)。在本文中,我们表明,如果$ f_0 $和$ f_1 $相对于坐标$(z_1,z_2,z_3)$“方便”,并且如果曲线的奇异性$ f_0 = 0 $ f_1 = 0 $ and $ f_1 = 0 $ newton newton newton newton newton newton newton in Newton newton in Newton newton in Newton newtor in Newton newtrese n newtor Anew newto n newter Anew newtore in Pocal coordinates in Bocornate $(ZAR $(ZAR)$(ZAR)$(G_1)$(g_1)表面,即一对Zariski对多项式$ g_0 $和$ g_1 $的表面,具有相同的Teissier的$μ^*$ - 序列,但位于$μ^*$的不同路径连接组件中 - 恒定稳定性。为此,我们证明了一个新的通用公式,在适当的条件下,在适当的条件下,上述类型的函数数量,我们(在一般环境中)表明,两个多项式函数位于$μ^*$的相同路径连接组件中 - 恒定阶层 - 始终可以通过“零件复杂的分析路径”连接。

A Zariski pair of surfaces is a pair of complex polynomial functions in $\mathbb{C}^3$ which is obtained from a classical Zariski pair of projective curves $f_0(z_1,z_2,z_3)=0$ and $f_1(z_1,z_2,z_3)=0$ of degree $d$ in $\mathbb{P}^2$ by adding a same term of the form $z_i^{d+m}$ ($m\geq 1$) to both $f_0$ and $f_1$ so that the corresponding affine surfaces of $\mathbb{C}^3$ -- defined by $g_0:=f_0+z_i^{d+m}$ and $g_1:=f_1+z_i^{d+m}$ -- have an isolated singularity at the origin and the same zeta-function for the monodromy associated with their Milnor fibrations (so, in particular, $g_0$ and $g_1$ have the same Milnor number). In the present paper, we show that if $f_0$ and $f_1$ are "convenient" with respect to the coordinates $(z_1,z_2,z_3)$ and if the singularities of the curves $f_0=0$ and $f_1=0$ are Newton non-degenerate in some suitable local coordinates, then $(g_0,g_1)$ is a $μ^*$-Zariski pair of surfaces, that is, a Zariski pair of surfaces whose polynomials $g_0$ and $g_1$ have the same Teissier's $μ^*$-sequence but lie in different path-connected components of the $μ^*$-constant stratum. To this end, we prove a new general formula that gives, under appropriate conditions, the Milnor number of functions of the above type, and we show (in a general setting) that two polynomials functions lying in the same path-connected component of the $μ^*$-constant stratum can always be joined by a "piecewise complex-analytic path".

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源