论文标题
量子普遍综合的忽略线性评估
Quantum Universally Composable Oblivious Linear Evaluation
论文作者
论文摘要
忽略的线性评估是对遗忘转移的概括,在这种情况下,两个不信任的各方忽略地计算了线性函数,f(x)= ax + b,即,每个人提供了它们的输入,以计算其仅收到的输出f(x)。从结构和安全的角度来看,忽略的线性评估对于基于算术的安全多方计算协议是基础。在经典的情况下,可以使用遗忘的传输生成遗忘的线性评估协议,并且原则上可以使用量子遗漏转移将其量子对应物作为直接扩展构建。在这里,我们介绍了我们的最佳知识,即遗忘线性评估的量子协议,此外,它不依赖于量子遗漏的转移。我们首先提出一个半honest协议,然后使用提交和开放策略将其扩展到不诚实的设置。我们的协议使用高维量子状态在Prime和Prime-Phower维度的Galois场上遗忘了F(X)。这些构造利用了Hilbert空间中的一组完整的互无偏基,并在Heisenberg-Weyl运算符上存在线性行为。我们还概括了我们的协议以实现矢量忽略的线性评估,其中生成了几种忽略的线性评估实例,从而使协议更有效。我们证明了在量子通用合并性框架内具有静态安全性的协议。
Oblivious linear evaluation is a generalization of oblivious transfer, whereby two distrustful parties obliviously compute a linear function, f (x) = ax + b, i.e., each one provides their inputs that remain unknown to the other, in order to compute the output f (x) that only one of them receives. From both a structural and a security point of view, oblivious linear evaluation is fundamental for arithmetic-based secure multi-party computation protocols. In the classical case, oblivious linear evaluation protocols can be generated using oblivious transfer, and their quantum counterparts can, in principle, be constructed as straightforward extensions using quantum oblivious transfer. Here, we present the first, to the best of our knowledge, quantum protocol for oblivious linear evaluation that, furthermore, does not rely on quantum oblivious transfer. We start by presenting a semi-honest protocol, and then extend it to the dishonest setting employing a commit-and-open strategy. Our protocol uses high-dimensional quantum states to obliviously compute f (x) on Galois Fields of prime and prime-power dimension. These constructions utilize the existence of a complete set of mutually unbiased bases in prime-power dimension Hilbert spaces and their linear behaviour upon the Heisenberg-Weyl operators. We also generalize our protocol to achieve vector oblivious linear evaluation, where several instances of oblivious linear evaluation are generated, thus making the protocol more efficient. We prove the protocols to have static security in the framework of quantum universal composability.