论文标题

深度学习的计算微型介质

Deep-learning-augmented Computational Miniature Mesoscope

论文作者

Xue, Yujia, Yang, Qianwan, Hu, Guorong, Guo, Kehan, Tian, Lei

论文摘要

荧光显微镜对于研究生物结构和动力学至关重要。但是,现有系统遭受了视野(FOV),解决方案和复杂性之间的权衡,因此无法满足新兴的小型平台的需求,从而在跨厘米级的FOV方面提供了微观尺度的分辨率。为了克服这一挑战,我们开发了计算微型介质(cm $^2 $),该计算策略利用了计算成像策略,以在微型化平台中启用跨宽FOV的单发3D高分辨率成像。在这里,我们提出了CM $^2 $ V2,该$ v2可以显着提高硬件和计算。我们将3 $ \ times $ 3 Microlens阵列与新的混合发射过滤器进行了补充,该滤镜将成像对比度提高了5 $ \ times $,并为LED照明器设计了3D打印的Freeform准直符,将激发效率提高了3 $ \ times $。为了启用大型成像量的高分辨率重建,我们开发了一种精确有效的3D线性变化(LSV)模型,该模型表征了空间变化的畸变。然后,我们仅使用3D-LSV模拟器训练多模块深度学习模型CM $^2 $ NET。我们表明,CM $^2 $ NET可以很好地推广到实验和实现$ \ sim $ 7毫米的FOV和800- $μ$ m的深度,并提供准确的3D重建,并提供$ \ sim $ \ sim $ 6- $ m $ m横向和$ \ $ \ sim $ 25- $ 25- $μ$ m axial MAXIAL分辨率。与以前的基于模型的算法相比,这提供了$ \ sim $ 8 $ \ times $更好的轴向本地化和$ \ sim $ 1400 $ \ times $更快的速度。我们预计,这种简单且低成本的计算微型成像系统将对许多大规模3D荧光成像应用产生影响。

Fluorescence microscopy is essential to study biological structures and dynamics. However, existing systems suffer from a tradeoff between field-of-view (FOV), resolution, and complexity, and thus cannot fulfill the emerging need of miniaturized platforms providing micron-scale resolution across centimeter-scale FOVs. To overcome this challenge, we developed Computational Miniature Mesoscope (CM$^2$) that exploits a computational imaging strategy to enable single-shot 3D high-resolution imaging across a wide FOV in a miniaturized platform. Here, we present CM$^2$ V2 that significantly advances both the hardware and computation. We complement the 3$\times$3 microlens array with a new hybrid emission filter that improves the imaging contrast by 5$\times$, and design a 3D-printed freeform collimator for the LED illuminator that improves the excitation efficiency by 3$\times$. To enable high-resolution reconstruction across the large imaging volume, we develop an accurate and efficient 3D linear shift-variant (LSV) model that characterizes the spatially varying aberrations. We then train a multi-module deep learning model, CM$^2$Net, using only the 3D-LSV simulator. We show that CM$^2$Net generalizes well to experiments and achieves accurate 3D reconstruction across a $\sim$7-mm FOV and 800-$μ$m depth, and provides $\sim$6-$μ$m lateral and $\sim$25-$μ$m axial resolution. This provides $\sim$8$\times$ better axial localization and $\sim$1400$\times$ faster speed as compared to the previous model-based algorithm. We anticipate this simple and low-cost computational miniature imaging system will be impactful to many large-scale 3D fluorescence imaging applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源