论文标题
部分可观测时空混沌系统的无模型预测
Improving Visual Grounding with Visual-Linguistic Verification and Iterative Reasoning
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Visual grounding is a task to locate the target indicated by a natural language expression. Existing methods extend the generic object detection framework to this problem. They base the visual grounding on the features from pre-generated proposals or anchors, and fuse these features with the text embeddings to locate the target mentioned by the text. However, modeling the visual features from these predefined locations may fail to fully exploit the visual context and attribute information in the text query, which limits their performance. In this paper, we propose a transformer-based framework for accurate visual grounding by establishing text-conditioned discriminative features and performing multi-stage cross-modal reasoning. Specifically, we develop a visual-linguistic verification module to focus the visual features on regions relevant to the textual descriptions while suppressing the unrelated areas. A language-guided feature encoder is also devised to aggregate the visual contexts of the target object to improve the object's distinctiveness. To retrieve the target from the encoded visual features, we further propose a multi-stage cross-modal decoder to iteratively speculate on the correlations between the image and text for accurate target localization. Extensive experiments on five widely used datasets validate the efficacy of our proposed components and demonstrate state-of-the-art performance. Our code is public at https://github.com/yangli18/VLTVG.