论文标题
协调的飞行员传输,用于检测雷利褪色下巨大的物联网网络中信号稀疏水平
Coordinated Pilot Transmissions for Detecting the Signal Sparsity Level in a Massive IoT Network under Rayleigh Fading
论文作者
论文摘要
利用压缩感应(CS)多用户检测(MUD)的无赠款协议吸引了通过零星设备活动解决大型机器型通信(MMTC)中的随机访问问题。此类协议将大大受益于对稀疏度级别的确定性知识,即同时有活跃的设备$ k $的瞬时数量。为此,我们在此引入了一个框架,该框架依赖于传输块开始时的短期阶段依靠协调的飞行员变速器(CPT),以在Rayleigh Fading下检测MMTC方案中的$ K $。可以将CPT实施为:I)U-CPT,仅利用上行链路传输或A-CPT,其中还包括用于解决淡出淡出不确定性的渠道状态信息(CSI)的下行链路传输。我们讨论了A-CPT的两个特定实现:ii)A-CPT-F,该实现基于CSI的相位校正,同时利用U-CPT使用的相同统计逆功率控制,以及III)A-CPT-D,该A-CPT-D实现了基于动态的CSI基于CSI的逆电源控制,尽管如果其相应的频道太沉默,则需要在其中保持某些活跃设备。我们通过将原始整数检测/分类问题放松到连续的真实域中的估计问题,然后进行圆形操作,从而为每个CPT机理得出一个信号稀疏度检测器。我们表明,在使用U-CPT和A-CPT机制运行时,放松估计器的差异会随着$ K^2 $和$ K $的增加而增加。发现估计器在U-CPT,A-CPT-F和A-CPT-D下的分布分别遵循指数,高斯和学生的$ T- $分布。分析A-CPT-D的优势,这也通过数值结果证实。我们揭示了一些有趣的权衡,并突出了潜在的研究方向。
Grant-free protocols exploiting compressed sensing (CS) multi-user detection (MUD) are appealing for solving the random access problem in massive machine-type communications (mMTC) with sporadic device activity. Such protocols would greatly benefit from a prior deterministic knowledge of the sparsity level, i.e., instantaneous number of simultaneously active devices $K$. Aiming at this, herein we introduce a framework relying on coordinated pilot transmissions (CPT) over a short phase at the beginning of the transmission block for detecting $K$ in mMTC scenarios under Rayleigh fading. CPT can be implemented either as: i) U-CPT, which exploits only uplink transmissions, or A-CPT, which includes also downlink transmissions for channel state information (CSI) acquisition that resolve fading uncertainty. We discuss two specific implementations of A-CPT: ii) A-CPT-F, which implements CSI-based phase corrections while leveraging the same statistical inverse power control used by U-CPT, and iii) A-CPT-D, which implements a dynamic CSI-based inverse power control, although it requires some active devices to remain in silence if their corresponding channels are too faded. We derive a signal sparsity level detector for each CPT mechanism by relaxing the original integer detection/classification problem to an estimation problem in the continuous real domain followed by a rounding operation. We show that the variance of the relaxed estimator increases with $K^2$ and $K$ when operating with U-CPT and A-CPT mechanisms, respectively. The distribution of the estimators under U-CPT, A-CPT-F and A-CPT-D is found to follow an exponential, Gaussian, and Student's $t-$like distribution, respectively. Analyses evince the superiority of A-CPT-D, which is also corroborated via numerical results. We reveal several interesting trade-offs and highlight potential research directions.