论文标题
关于接触式封面的符号填充的地理
On geography of symplectic fillings of contact branched covers
论文作者
论文摘要
在本文中,我们确定了触点的确切符号填充物的Euler特性和签名,这是标准触点的三个球形覆盖层的双,3倍或4倍的循环盖,该覆盖物在某些横向准阳性链接上分支了分支。这些链接包括所有的准阳性结,其交叉数小于11和所有准阳性链接,其交叉数小于12和非零零。
In this paper, we determine the Euler characteristics and signatures of the exact symplectic fillings of the contact double, 3-fold or 4-fold cyclic covers of the standard contact 3-sphere branched over certain transverse quasi-positive links. These links include all quasi-positive knots with crossing numbers smaller than 11 and all quasi-positive links with crossing numbers smaller than 12 and nonzero nullity.