论文标题
三角形表面中的跨越平面板块图
Vertex spanning planar Laman graphs in triangulated surfaces
论文作者
论文摘要
我们证明,每个三角形的三角剖分,投影平面和klein瓶,都包含一个跨顶点的平面拉曼图作为子复合。我们得出的结果是,我们得出的结论是,非负欧拉特征表面的三角剖分的每$ 1 $ - 骨骼都具有在平面上的刚性实现,最多可以在26个位置用于顶点。
We prove that every triangulation of either of the torus, projective plane and Klein bottle, contains a vertex-spanning planar Laman graph as a subcomplex. Invoking a result of Kir{á}ly, we conclude that every $1$-skeleton of a triangulation of a surface of nonnegative Euler characteristic has a rigid realization in the plane using at most 26 locations for the vertices.