论文标题

通过$β$ - 差异自动编码器的物理意识到的跨气流的减少订购建模

Physics-aware Reduced-order Modeling of Transonic Flow via $β$-Variational Autoencoder

论文作者

Kang, Yu-Eop, Yang, Sunwoong, Yee, Kwanjung

论文摘要

基于自动编码器的降低订购建模(ROM)最近由于其捕获基本非线性特征的能力而引起了极大的关注。但是,两个关键缺点严重破坏了其对各种物理应用的可伸缩性:纠缠和不可解释的潜在变量(LVS)和潜在空间维度的眼罩确定。在这方面,这项研究提出了仅使用$β$ - 波动自动编码器提取的可解释和信息密集型LV的物理感知ROM,在本文中被称为物理感知的LVS。为了提取这些LV,它们的独立性和信息强度在二维跨音速基准问题中进行了定量审查。然后,对物理感知的LV的物理含义进行了彻底的研究,我们确认,使用适当的超参数$β$,它们实际上对应于训练数据集的生成因子,马赫数和攻击角度。据《最好的作者所知》,我们的工作是第一个实际上确认$β$ - 变量自动编码器可以自动提取应用物理领域的物理生成因子。最后,将仅利用物理学的LVS的物理学意识ROM与传统的ROM进行了比较,并且成功验证了其有效性和效率。

Autoencoder-based reduced-order modeling (ROM) has recently attracted significant attention, owing to its ability to capture underlying nonlinear features. However, two critical drawbacks severely undermine its scalability to various physical applications: entangled and therefore uninterpretable latent variables (LVs) and the blindfold determination of latent space dimension. In this regard, this study proposes the physics-aware ROM using only interpretable and information-intensive LVs extracted by $β$-variational autoencoder, which are referred to as physics-aware LVs throughout this paper. To extract these LVs, their independence and information intensity are quantitatively scrutinized in a two-dimensional transonic flow benchmark problem. Then, the physical meanings of the physics-aware LVs are thoroughly investigated and we confirmed that with appropriate hyperparameter $β$, they actually correspond to the generating factors of the training dataset, Mach number and angle of attack. To the best of the authors' knowledge, our work is the first to practically confirm that $β$-variational autoencoder can automatically extract the physical generating factors in the field of applied physics. Finally, physics-aware ROM, which utilizes only physics-aware LVs, is compared with conventional ROMs, and its validity and efficiency are successfully verified.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源