论文标题

无用的货物中的及时状态更新的节能缓存和任务卸载

Energy-efficient Caching and Task offloading for Timely Status Updates in UAV-assisted VANETs

论文作者

Hu, Nan, Qin, Xiaoqi, Ma, Nan, Liu, Yiming, Yao, Yuanyuan, Zhang, Ping

论文摘要

智能边缘网络正在成熟,以启用智能和高效的运输系统。在这封信中,我们考虑了无人驾驶飞机(UAV)辅助的车辆网络,在该网络中,无人机提供与基站(BS)相辅相成的缓存和计算服务。一个主要的挑战是,车辆需要通过编排无处不在的缓存和计算资源来及时获得情境意识。请注意,车辆的感知任务的缓存数据包含时间变化的上下文信息,因此应将缓存数据的新鲜度与任务执行结合使用,以确保获得的状态更新的及时性。为此,我们提出了一个两阶段的性能指标,以量化缓存刷新和计算卸载决策对状态更新时代的影响。我们通过共同考虑加速刷新,计算卸载和状态更新的老化来制定能量最小化问题。为了促进在线决策,我们提出了一个基于深层的确定性政策梯度(DDPG)的解决方案程序,并结合了差异化的经验重播机制以加速收敛。仿真结果表明,在获得新的状态更新方面,提议的解决方案的性能在能源消耗方面具有竞争力。

Intelligent edge network is maturing to enable smart and efficient transportation systems. In this letter, we consider unmanned aerial vehicle (UAV)-assisted vehicular networks where UAVs provide caching and computing services in complement with base station (BS). One major challenge is that vehicles need to obtain timely situational awareness via orchestration of ubiquitous caching and computing resources. Note that cached data for vehicles' perception tasks contains time-varying context information, thus freshness of cached data should be considered in conjunction with task execution to guarantee timeliness of obtained status updates. To this end, we propose a two-stage performance metric to quantify the impact of cache refreshing and computation offloading decisions on the age of status updates. We formulate an energy minimization problem by jointly considering cache refreshing, computation offloading and aging of status updates. To facilitate online decision making, we propose a deep deterministic policy gradient(DDPG)-based solution procedure and incorporate differentiated experience replay mechanism to accelerate convergence. Simulation results show that the performance of proposed solution is competitive in terms of energy consumption for obtaining fresh status updates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源