论文标题
填补基于个体的进化模型和汉密尔顿 - 雅各比方程之间的空白
Filling the gap between individual-based evolutionary models and Hamilton-Jacobi equations
论文作者
论文摘要
我们考虑了一个随机模型,用于由具有有限的圆环网格以及突变和选择的特征构成的离散种群的演变。除非发生突变,并影响出生率,否则特征是垂直遗传的。我们专注于人口大,单个突变很小但不稀有的参数缩放,并且性状值的网格网格比突变步骤的大小小得多。在长期考虑人口的演变时,小型亚种群的贡献可能会强烈影响动态。我们的主要结果量化了对数尺度的子群体大小的渐近动力学。我们确定在缩放随机种群大小过程的对数的参数下,方便地归一化,收敛到汉密尔顿 - 雅各比方程的独特粘度解决方案。这样的汉密尔顿 - 雅各比方程已经源自抛物线的差异方程,并在定量性状的适应研究中得到了广泛发展。我们的工作直接从基于随机的个体模型中为此框架提供了理由,从而更好地理解了这种方法中获得的结果。该证明利用了几乎确定的最大原则和对马丁纳尔零件的仔细控制。
We consider a stochastic model for the evolution of a discrete population structured by a trait with values on a finite grid of the torus, and with mutation and selection. Traits are vertically inherited unless a mutation occurs, and influence the birth and death rates. We focus on a parameter scaling where population is large, individual mutations are small but not rare, and the grid mesh for the trait values is much smaller than the size of mutation steps. When considering the evolution of the population in a long time scale, the contribution of small sub-populations may strongly influence the dynamics. Our main result quantifies the asymptotic dynamics of sub-population sizes on a logarithmic scale. We establish that under the parameter scaling the logarithm of the stochastic population size process, conveniently normalized, converges to the unique viscosity solution of a Hamilton-Jacobi equation. Such Hamilton-Jacobi equations have already been derived from parabolic integro-differential equations and have been widely developed in the study of adaptation of quantitative traits. Our work provides a justification of this framework directly from a stochastic individual based model, leading to a better understanding of the results obtained within this approach. The proof makes use of almost sure maximum principles and careful controls of the martingale parts.