论文标题

实体搜索的实体感知变压器

Entity-aware Transformers for Entity Search

论文作者

Gerritse, Emma J., Hasibi, Faegheh, de Vries, Arjen P.

论文摘要

预先训练的语言模型(例如BERT)是实现自然语言处理各种任务的最先进结果的关键要素,最近也在信息检索中获得了各种任务。重新研究甚至声称Bert能够捕获有关实体关系和财产的事实知识,这些信息通常从知识图中获得。本文研究了以下问题:基于BERT的实体检索模型是否受益于存储在知识图中的其他实体信息?为了解决这个研究问题,我们将实体嵌入与预训练的BERT模型相同的输入空间中,并将这些实体嵌入将其注入BERT模型。然后,该富含实体的语言模型被用于实体检索任务。我们表明,富含实体的BERT模型提高了针对实体的伯特模型的有效性,为实体检索任务建立了新的最新结果,并对复杂的自然语言查询进行了重大改进,并查询请求具有特定财产的实体列表。此外,我们表明,富含实体的模型提供的实体信息特别有助于与不太受欢迎的实体相关的查询。最后,我们从经验上观察到,富含实体的BERT模型可以对有限的培训数据进行微调,否则由于BERT在几个样本的微型调整中的已知不稳定性,这是不可行的,从而为BERT的数据培训提供了实体搜索的数据有效培训。

Pre-trained language models such as BERT have been a key ingredient to achieve state-of-the-art results on a variety of tasks in natural language processing and, more recently, also in information retrieval.Recent research even claims that BERT is able to capture factual knowledge about entity relations and properties, the information that is commonly obtained from knowledge graphs. This paper investigates the following question: Do BERT-based entity retrieval models benefit from additional entity information stored in knowledge graphs? To address this research question, we map entity embeddings into the same input space as a pre-trained BERT model and inject these entity embeddings into the BERT model. This entity-enriched language model is then employed on the entity retrieval task. We show that the entity-enriched BERT model improves effectiveness on entity-oriented queries over a regular BERT model, establishing a new state-of-the-art result for the entity retrieval task, with substantial improvements for complex natural language queries and queries requesting a list of entities with a certain property. Additionally, we show that the entity information provided by our entity-enriched model particularly helps queries related to less popular entities. Last, we observe empirically that the entity-enriched BERT models enable fine-tuning on limited training data, which otherwise would not be feasible due to the known instabilities of BERT in few-sample fine-tuning, thereby contributing to data-efficient training of BERT for entity search.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源