论文标题
高斯理论中纠正无发品定理
Rectifying No-Hair Theorems in Gauss-Bonnet theory
论文作者
论文摘要
我们在爱因斯坦 - 斯卡尔 - 高斯 - 邦网理论中重新审视了标量和高斯 - 河网术语之间在四维时空中具有一般耦合函数的一般耦合函数。对于旧的无头性定理,表面项到目前为止被忽略了,但是当耦合函数在Infinity不会消失时,这起着至关重要的作用,而标量场则在该方案中相对于径向坐标的倒数,就可以扩展功率。我们还澄清说,只要满足规律性条件,新颖的无发色定理总是可以避免常规黑洞解决方案。
We revisit the no-hair theorems in Einstein-Scalar-Gauss-Bonnet theory with a general coupling function between the scalar and the Gauss-Bonnet term in four dimensional spacetime. In the case of the old no-hair theorem the surface term has so far been ignored, but this plays a crucial role when the coupling function does not vanish at infinity and the scalar field admits a power expansion with respect to the inverse of the radial coordinate in that regime. We also clarify that the novel no-hair theorem is always evaded for regular black hole solutions without any restrictions as long as the regularity conditions are satisfied.