论文标题

D-DPCC:深度动态点云通过3D运动预测

D-DPCC: Deep Dynamic Point Cloud Compression via 3D Motion Prediction

论文作者

Fan, Tingyu, Gao, Linyao, Xu, Yiling, Li, Zhu, Wang, Dong

论文摘要

3D动态点云(DPC)的非均匀分布性质为其高效框架间压缩带来了重大挑战。本文提出了一种新型的3D稀疏卷积深度动态点云压缩(D-DPCC)网络,以补偿和压缩DPC几何形状,并在特征空间中使用3D运动估计和运动补偿。在提出的D-DPCC网络中,我们设计了一个{\ it多尺度运动融合}(MMF)模块,以准确估计相邻点云帧的特征表示之间的3D光流。具体而言,我们利用一个基于3D稀疏卷积的编码器来获取特征空间中运动估计的潜在表示,并引入了融合3D运动嵌入的提出的MMF模块。此外,对于运动补偿,我们提出了3D {\它自适应加权的插值}(3DAWI)算法,并具有惩罚系数,以适应降低遥远邻居的影响。我们通过基于自动编码器的网络来压缩运动嵌入和残差。据我们所知,本文是提出端到端深度动态点云压缩框架的第一本作品。实验结果表明,所提出的D-DPCC框架可以在基于最新的基于视频的点云压缩(V-PCC)V13的情况下,平均达到76 \%BD率(Bjontegaard Delta速率)。

The non-uniformly distributed nature of the 3D dynamic point cloud (DPC) brings significant challenges to its high-efficient inter-frame compression. This paper proposes a novel 3D sparse convolution-based Deep Dynamic Point Cloud Compression (D-DPCC) network to compensate and compress the DPC geometry with 3D motion estimation and motion compensation in the feature space. In the proposed D-DPCC network, we design a {\it Multi-scale Motion Fusion} (MMF) module to accurately estimate the 3D optical flow between the feature representations of adjacent point cloud frames. Specifically, we utilize a 3D sparse convolution-based encoder to obtain the latent representation for motion estimation in the feature space and introduce the proposed MMF module for fused 3D motion embedding. Besides, for motion compensation, we propose a 3D {\it Adaptively Weighted Interpolation} (3DAWI) algorithm with a penalty coefficient to adaptively decrease the impact of distant neighbors. We compress the motion embedding and the residual with a lossy autoencoder-based network. To our knowledge, this paper is the first work proposing an end-to-end deep dynamic point cloud compression framework. The experimental result shows that the proposed D-DPCC framework achieves an average 76\% BD-Rate (Bjontegaard Delta Rate) gains against state-of-the-art Video-based Point Cloud Compression (V-PCC) v13 in inter mode.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源