论文标题

Vae-loco:通过学习分离的步态表示,多功能四足

VAE-Loco: Versatile Quadruped Locomotion by Learning a Disentangled Gait Representation

论文作者

Mitchell, Alexander L., Merkt, Wolfgang, Geisert, Mathieu, Gangapurwala, Siddhant, Engelcke, Martin, Jones, Oiwi Parker, Havoutis, Ioannis, Posner, Ingmar

论文摘要

四足动物的运动迅速成熟到机器人能够实现高度动态操作的程度。但是,目前的计划者无法改变空中旋转脚的关键步态参数。在这项工作中,我们解决了这一限制,并表明它通过学习捕获构成特定步态的关键立场阶段的潜在空间来提高控制器的鲁棒性至关重要。这是通过在单一小跑样式上训练的生成模型来实现的,该模型鼓励分解,以便将驱动信号应用于潜在状态的单个维度可诱导整体计划综合,从而综合了连续的小跑风格。我们证明了驱动信号映射的特定特性直接到步态参数,例如节奏,脚步高度和完整的立场持续时间。由于我们方法的性质,这些合成的步态在机器人操作期间在线连续变化。生成模型的使用有助于探测和缓解干扰,以提供多功能,强大的计划框架。我们评估了两种版本的实际Anymal四倍体机器人的方法,并证明我们的方法可以连续地融合动态小跑样式,同时又强大且对外部扰动反应。

Quadruped locomotion is rapidly maturing to a degree where robots are able to realise highly dynamic manoeuvres. However, current planners are unable to vary key gait parameters of the in-swing feet midair. In this work we address this limitation and show that it is pivotal in increasing controller robustness by learning a latent space capturing the key stance phases constituting a particular gait. This is achieved via a generative model trained on a single trot style, which encourages disentanglement such that application of a drive signal to a single dimension of the latent state induces holistic plans synthesising a continuous variety of trot styles. We demonstrate that specific properties of the drive signal map directly to gait parameters such as cadence, footstep height and full stance duration. Due to the nature of our approach these synthesised gaits are continuously variable online during robot operation. The use of a generative model facilitates the detection and mitigation of disturbances to provide a versatile and robust planning framework. We evaluate our approach on two versions of the real ANYmal quadruped robots and demonstrate that our method achieves a continuous blend of dynamic trot styles whilst being robust and reactive to external perturbations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源