论文标题
用量子计算机测试传统量子理论中复数的必要性
Testing the necessity of complex numbers in traditional quantum theory with quantum computers
论文作者
论文摘要
最近,使用IBM量子计算机重新创建了量子理论标准配方中复数的必要性的最新实验。为了激发实验,我们提出了实现量子理论的基本结构。实现的描述显示出基于Clauser-Horne-Horne-Holt(CHSH)不平等的两种类型的Bell测试,可预测与复杂值量子力学相同的相关性。然而,对一个测试的稍作修改会导致对实现和复杂值构造的不同预测。尽管嘈杂的设备无法提供令人信服的结果,但显示某些设备具有足够小的错误率来伪造复合状态的量子理论的实用值。用量子计算机获得的结果与已发布的实验一致。这项工作证明了使用自由使用的量子设备以最少的技术专长探索量子力学的基础特征的可行性。因此,这种治疗方法可以激发新的大学生的新颖项目,参加了量子力学课程。
A recent experiment testing the necessity of complex numbers in the standard formulation of quantum theory is recreated using IBM quantum computers. To motivate the experiment, we present a basic construction for real-valued quantum theory. The real-valued description is shown to predict correlations identical to those of complex-valued quantum mechanics for two types of Bell tests based on the Clauser-Horne-Shimony-Holt (CHSH) inequality. A slight modification to one test, however, results in different predictions for the real- and complex-valued constructions. While noisier devices are incapable of delivering convincing results, it is shown that certain devices possess sufficiently small error rates to falsify real-valued formulations of quantum theory for composite states. The results obtained with quantum computers are consistent with published experiments. This work demonstrates the feasibility of using freely-available quantum devices to explore foundational features of quantum mechanics with minimal technical expertise. Accordingly, this treatment could inspire novel projects for undergraduate students taking a course on quantum mechanics.