论文标题

可扩展的私人决策树评估与均匀通信

Scalable Private Decision Tree Evaluation with Sublinear Communication

论文作者

Bai, Jianli, Song, Xiangfu, Cui, Shujie, Chang, Ee-Chien, Russello, Giovanni

论文摘要

私人决策树评估(PDTE)允许决策树持有人使用功能提供商运行安全协议。通过运行协议,功能提供商将学习分类结果。任何一方都没有透露更多。在大多数现有的PDTE协议中,所需的通信随树的深度$ d $呈指数增长,这对于大树木而言高效。这一缺点促使我们使用$ O(d)$通信复杂性设计sublinear PDTE协议。我们构建的核心是共享遗忘的选择(SOS)功能,允许两方从数组中执行一个秘密共享的遗忘读取操作。我们提供两个SOS协议,两者都实现了均方根交流,并提出了优化以进一步提高其效率。我们的Sublinear PDTE协议基于提出的SOS功能,我们在半冬季对手下证明了其安全性。我们将协议与在各种网络设置下的通信和计算方面进行比较。绩效评估表明,与现有解决方案相比,我们的协议在大树上是实用的,更可扩展的。

Private decision tree evaluation (PDTE) allows a decision tree holder to run a secure protocol with a feature provider. By running the protocol, the feature provider will learn a classification result. Nothing more is revealed to either party. In most existing PDTE protocols, the required communication grows exponentially with the tree's depth $d$, which is highly inefficient for large trees. This shortcoming motivated us to design a sublinear PDTE protocol with $O(d)$ communication complexity. The core of our construction is a shared oblivious selection (SOS) functionality, allowing two parties to perform a secret-shared oblivious read operation from an array. We provide two SOS protocols, both of which achieve sublinear communication and propose optimizations to further improve their efficiency. Our sublinear PDTE protocol is based on the proposed SOS functionality and we prove its security under a semi-honest adversary. We compare our protocol with the state-of-the-art, in terms of communication and computation, under various network settings. The performance evaluation shows that our protocol is practical and more scalable over large trees than existing solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源