论文标题

DWork型的一致性和$ P $ -ADIC KZ连接

Dwork-type congruences and $p$-adic KZ connection

论文作者

Varchenko, Alexander

论文摘要

我们表明,$ p $ -ADIC KZ与曲线的家族相关的$ y^q =(t-Z_1)\ dots(t-z_ {qg+1})$具有等级$ g $的不变性分支,而相应的复杂kz连接没有非繁琐的适当分支,这是由于其核酸造成的,其核心形式具有核次范围。不变子捆绑的构建是基于新的DWORT(类型的一致性Hasse)的基础。

We show that the $p$-adic KZ connection associated with the family of curves $y^q=(t-z_1)\dots (t-z_{qg+1})$ has an invariant subbundle of rank $g$, while the corresponding complex KZ connection has no nontrivial proper subbundles due to the irreducibility of its monodromy representation. The construction of the invariant subbundle is based on new Dwork--type congruences for associated Hasse--Witt matrices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源