论文标题
深度学习图像增强技术的全面调查
A Comprehensive Survey of Image Augmentation Techniques for Deep Learning
论文作者
论文摘要
深度学习一直在计算机视觉中取得不错的表现,需要大量图像,但是,在许多情况下,收集图像既昂贵又困难。为了减轻此问题,已经提出了许多图像增强算法是有效而有效的策略。了解当前的算法对于找到合适的方法或开发给定任务的新技术至关重要。在本文中,我们对图像扩展进行了全面的调查,并使用新颖的信息分类法进行了深度学习。为了获得基本思想,我们需要增加图像增强,我们介绍了计算机视觉任务和附近分布的挑战。然后,将算法分为三类;无模型,基于模型和优化基于策略的。无模型类别采用图像处理方法,而基于模型的方法利用可训练的图像生成模型。相反,基于策略的优化方法旨在找到最佳的操作或其组合。此外,我们通过两个更活跃的主题讨论了当前的常见应用趋势,利用了不同的方法来理解图像增强,例如组和内核理论,并部署图像增强量以进行无监督的学习。基于分析,我们认为我们的调查可以更好地理解选择合适的方法或设计用于实际应用的新型算法。
Deep learning has been achieving decent performance in computer vision requiring a large volume of images, however, collecting images is expensive and difficult in many scenarios. To alleviate this issue, many image augmentation algorithms have been proposed as effective and efficient strategies. Understanding current algorithms is essential to find suitable methods or develop novel techniques for given tasks. In this paper, we perform a comprehensive survey on image augmentation for deep learning with a novel informative taxonomy. To get the basic idea why we need image augmentation, we introduce the challenges in computer vision tasks and vicinity distribution. Then, the algorithms are split into three categories; model-free, model-based, and optimizing policy-based. The model-free category employs image processing methods while the model-based method leverages trainable image generation models. In contrast, the optimizing policy-based approach aims to find the optimal operations or their combinations. Furthermore, we discuss the current trend of common applications with two more active topics, leveraging different ways to understand image augmentation, such as group and kernel theory, and deploying image augmentation for unsupervised learning. Based on the analysis, we believe that our survey gives a better understanding helpful to choose suitable methods or design novel algorithms for practical applications.