论文标题
模拟可逆分子机械逻辑门和电路
Simulation of reversible molecular mechanical logic gates and circuits
论文作者
论文摘要
Landauer的原则对执行逻辑上不可逆的操作所需的工作构成了基本下限。逻辑上可逆的门提供了一种避免这些工作成本的方法,并简化了使整个热力学可逆的计算的任务。机械逻辑门的固有可逆性将使它们成为设计实用逻辑可逆计算系统的良好候选者,即使不是针对相对较大的此类系统的质量。在本文中,我们概述了即使在热噪声的效果下,这些可逆分子机械逻辑门的设计和模拟也接近热力学可逆性的极限,以及可以从中可以构建和模拟任意组合可逆电路的轮廓相关电路组件。我们证明,孤立的组件可以以热力学可逆的方式进行操作,并探索组合组件以实施更复杂的计算的复杂性。最后,我们演示了一种使用多个外部控件和具有工作半逐加回路的信号助推器构建任意可逆的组合电路的方法。
Landauer's principle places a fundamental lower limit on the work required to perform a logically irreversible operation. Logically reversible gates provide a way to avoid these work costs, and also simplify the task of making the computation as a whole thermodynamically reversible. The inherent reversibility of mechanical logic gates would make them good candidates for the design of practical logically reversible computing systems if not for the relatively large size and mass of such systems. In this paper, we outline the design and simulation of reversible molecular mechanical logic gates that come close to the limits of thermodynamic reversibility even under the effects of thermal noise, and outline associated circuit components from which arbitrary combinatorial reversible circuits can be constructed and simulated. We demonstrate that isolated components can be operated in a thermodynamically reversible manner, and explore the complexities of combining components to implement more complex computations. Finally, we demonstrate a method to construct arbitrarily large reversible combinatorial circuits using multiple external controls and signal boosters with a working half-adder circuit.