论文标题
StreamingHub:交互式流分析工作流程
StreamingHub: Interactive Stream Analysis Workflows
论文作者
论文摘要
可重复使用的数据/代码和可再现分析是质量研究的基础。但是,在设计交互式流分析工作流程的时间序列数据(例如,引人注目的数据)时,通常会忽略这一方面。一种与数据一起传输信息元数据的机制可以使此类工作流程智能消耗数据,将元数据传播到下游任务,从而自动产生可重复使用的可重复可再现的分析输出,并具有零监督。此外,设计,开发和执行此类工作流程的视觉编程接口可能可以快速进行跨学科研究的原型。利用这些想法,我们提出了流媒体,这是一个框架,用于使用视觉编程来构建元数据传播,交互式流分析工作流程。我们进行了两项案例研究,以评估框架的普遍性。同时,我们使用两种启发式方法来评估其计算流动性和数据增长。结果表明,我们的框架概括为多个任务,其性能开销最少。
Reusable data/code and reproducible analyses are foundational to quality research. This aspect, however, is often overlooked when designing interactive stream analysis workflows for time-series data (e.g., eye-tracking data). A mechanism to transmit informative metadata alongside data may allow such workflows to intelligently consume data, propagate metadata to downstream tasks, and thereby auto-generate reusable, reproducible analytic outputs with zero supervision. Moreover, a visual programming interface to design, develop, and execute such workflows may allow rapid prototyping for interdisciplinary research. Capitalizing on these ideas, we propose StreamingHub, a framework to build metadata propagating, interactive stream analysis workflows using visual programming. We conduct two case studies to evaluate the generalizability of our framework. Simultaneously, we use two heuristics to evaluate their computational fluidity and data growth. Results show that our framework generalizes to multiple tasks with a minimal performance overhead.