论文标题

对一阶汉密尔顿 - 雅各比方程的全球半腔,具有状态限制

Global semiconcavity of solutions to first-order Hamilton-Jacobi equations with state constraints

论文作者

Han, Yuxi

论文摘要

我们专注于针对一阶汉密尔顿的全球半充电 - 具有州限制的雅各比方程,尤其是对于hamiltonian $ h(x,β):= | = |> |β|^p-f(x)$,$ p \ in $ p \ in(1,2] $。我们首先表明该解决方案在每个局部依赖于半段的时间表,并在第一次依赖半段的时间段,并在半度性上进行了分析,并将量度用于半度性的时间段,并将其限制在半度性上,并依赖于半含量的时间段,并将其分为半循环。从这一点开始,在$ df $上的适当条件下,我们证明,对于任何最小化曲线,击中域的边界的时间为$+\ infty $,因此,该解决方案在全球范围内是$ df $的情况。 KAM理论。

We focus on the global semiconcavity of solutions to first-order Hamilton--Jacobi equations with state constraints, especially for the Hamiltonian $H(x, β):=|β|^p-f(x)$ with $p \in (1, 2]$. We first show that the solution is locally semiconcave, and the semiconcavity constant at each point depends on the first time a corresponding minimizing curve emanating from this point hits the boundary. Then, with appropriate conditions on $Df$, we prove that for any such minimizing curve, the time it takes to hit the boundary of the domain is $+\infty$, and as a consequence, the solution is globally semiconcave. Moreover, the condition on $Df$ is essentially optimal with examples in one-dimensional space. The proofs employ the Euler-Lagrange equations and techniques in weak KAM theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源