论文标题
在可集成推导的谎言代数结构上
On the Lie algebra structure of integrable derivations
论文作者
论文摘要
在Gerstenhaber的工作基础上,我们表明,在Artin代数$ a $ a $ a lie代数上的可集成派生的空间,如果$ a $包含一个特征性$ p $的领域,则有限的谎言代数。我们推断出$ \ hh^1(a)$中的可集成类的空间形式a(限制)lie代数,在派生的等价方面是不变的,并且在自注射代数之间的莫里塔类型稳定等价下。我们还为林克曼(Linckelmann)和法尔卡斯(Farkas),盖斯(Geiss)和马科斯(Marcos)提出的有关综合派生的问题提供了负面答案。
Building on work of Gerstenhaber, we show that the space of integrable derivations on an Artin algebra $A$ forms a Lie algebra, and a restricted Lie algebra if $A$ contains a field of characteristic $p$. We deduce that the space of integrable classes in $\HH^1(A)$ forms a (restricted) Lie algebra that is invariant under derived equivalences, and under stable equivalences of Morita type between self-injective algebras. We also provide negative answers to questions about integrable derivations posed by Linckelmann and by Farkas, Geiss and Marcos.