论文标题

Bézier曲线高斯流程

Bézier Curve Gaussian Processes

论文作者

Hug, Ronny, Becker, Stefan, Hübner, Wolfgang, Arens, Michael, Beyerer, Jürgen

论文摘要

顺序数据的概率模型是与处理及时有序信息有关的各种应用程序的基础。该域中的主要方法是由复发性神经网络给出的,它实现了近似贝叶斯方法(例如变异自动编码器或生成对抗网络)或基于回归的方法,即混合物密度网络(MDN)的变化。在本文中,我们专注于$ \ Mathcal {n} $ -MDN变体,该变体的参数化(混合物)用于建模随机过程的Probabilisticbézier曲线($ \ MATHCAL {N} $ - 曲线)。在计算成本和稳定性方面,MDN在表达性方面通常落后于近似贝叶斯的方法。为此,我们提出了一种通过在$ \ Mathcal {n} $ -MDNS上启用完整的贝叶斯推断来缩小差距的方法。为此,我们表明$ \ Mathcal {n} $ - 曲线是高斯过程的特殊情况(称为$ \ Mathcal {n} $ - gp),然后得出不同模态的相应均值和内核函数。在此之后,我们建议使用$ \ MATHCAL {N} $ -MDN作为$ \ Mathcal {n} $ - GP先验发行的数据依赖的生成器。我们以人类轨迹预测为例,在应用程序上下文中显示了此组合模型在应用程序上下文中授予的优点。

Probabilistic models for sequential data are the basis for a variety of applications concerned with processing timely ordered information. The predominant approach in this domain is given by recurrent neural networks, implementing either an approximate Bayesian approach (e.g. Variational Autoencoders or Generative Adversarial Networks) or a regression-based approach, i.e. variations of Mixture Density networks (MDN). In this paper, we focus on the $\mathcal{N}$-MDN variant, which parameterizes (mixtures of) probabilistic Bézier curves ($\mathcal{N}$-Curves) for modeling stochastic processes. While in favor in terms of computational cost and stability, MDNs generally fall behind approximate Bayesian approaches in terms of expressiveness. Towards this end, we present an approach for closing this gap by enabling full Bayesian inference on top of $\mathcal{N}$-MDNs. For this, we show that $\mathcal{N}$-Curves are a special case of Gaussian processes (denoted as $\mathcal{N}$-GP) and then derive corresponding mean and kernel functions for different modalities. Following this, we propose the use of the $\mathcal{N}$-MDN as a data-dependent generator for $\mathcal{N}$-GP prior distributions. We show the advantages granted by this combined model in an application context, using human trajectory prediction as an example.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源