论文标题

一类随机隐藏凸优化的有效算法及其在网络收入管理中的应用

Efficient Algorithms for A Class of Stochastic Hidden Convex Optimization and Its Applications in Network Revenue Management

论文作者

Chen, Xin, He, Niao, Hu, Yifan, Ye, Zikun

论文摘要

我们以$ \ min_ {x \ in \ mathcal {x}} f(x)的形式研究一类随机非convex优化:= \ mathbb {e}_ξ[f(ϕ(x,x,ξ)$,即通过可变转换$ u = \ mathbb {e} [ϕ(x,ξ)] $利用(隐式)凸的重新制定,我们开发了基于随机梯度的算法,并建立了它们的样本和梯度复杂性,以实现$ε$ - $ -Global Optimal Optimal解决方案。有趣的是,我们提出的镜像随机梯度(MSG)方法仅在原始的$ x $ - 空格中使用原始nonConvex物镜$ f $ f $ f $并实现$ \ tilde {\ Mathcal {o}}}(ε^{ - 2})$复杂性,这使得较低的范围可求解稳定的稳定性问题。在预订限制控制下,我们以随机的二维容量,随机消耗和路由灵活性作为随机非convex优化的特殊情况,以随机的二维容量,随机的能力,随机消耗和路由灵活性来制定空气货车网络收入管理(NRM)问题,其中随机函数$ ϕ(x,x,ξ)= x \ wedge $。广泛的数值实验证明了我们提出的MSG算法的出色性能,用于预订限额控制,收入较高,计算成本较低,而不是基于竞标价格的控制策略,尤其是在随机容量的差异较大时。 关键字:随机非convex优化,隐藏的凸性,梯度方法,乘客网络收入管理,气货网络收入管理

We study a class of stochastic nonconvex optimization in the form of $\min_{x\in\mathcal{X}} F(x):=\mathbb{E}_ξ[f(ϕ(x,ξ))]$, i.e., $F$ is a composition of a convex function $f$ and a random function $ϕ$. Leveraging an (implicit) convex reformulation via a variable transformation $u=\mathbb{E}[ϕ(x,ξ)]$, we develop stochastic gradient-based algorithms and establish their sample and gradient complexities for achieving an $ε$-global optimal solution. Interestingly, our proposed Mirror Stochastic Gradient (MSG) method operates only in the original $x$-space using gradient estimators of the original nonconvex objective $F$ and achieves $\tilde{\mathcal{O}}(ε^{-2})$ complexities, which matches the lower bounds for solving stochastic convex optimization problems. Under booking limits control, we formulate the air-cargo network revenue management (NRM) problem with random two-dimensional capacity, random consumption, and routing flexibility as a special case of the stochastic nonconvex optimization, where the random function $ϕ(x,ξ)=x\wedgeξ$, i.e., the random demand $ξ$ truncates the booking limit decision $x$. Extensive numerical experiments demonstrate the superior performance of our proposed MSG algorithm for booking limit control with higher revenue and lower computation cost than state-of-the-art bid-price-based control policies, especially when the variance of random capacity is large. KEYWORDS: stochastic nonconvex optimization, hidden convexity, gradient methods, passenger network revenue management, air-cargo network revenue management

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源