论文标题

在未标记的未注明病理学幻灯片上使用自我监督的学习绘制组织癌症表型的景观

Mapping the landscape of histomorphological cancer phenotypes using self-supervised learning on unlabeled, unannotated pathology slides

论文作者

Quiros, Adalberto Claudio, Coudray, Nicolas, Yeaton, Anna, Yang, Xinyu, Liu, Bojing, Le, Hortense, Chiriboga, Luis, Karimkhan, Afreen, Narula, Navneet, Moore, David A., Park, Christopher Y., Pass, Harvey, Moreira, Andre L., Quesne, John Le, Tsirigos, Aristotelis, Yuan, Ke

论文摘要

确切的癌症诊断和管理取决于病理学家从显微镜图像中提取信息。这些图像包含复杂的信息,需要耗时的专家人类解释,这些解释容易出现人类偏见。被监督的深度学习方法已被证明是针对分类任务的强大的,但是它们固有地受到用于培训这些模型的注释的成本和质量的限制。为了解决这种监督方法的局限性,我们开发了组织形态表型学习(HPL),这是一种完全蓝色的{自}监督方法,不需要专家标签或注释,并通过自动发现小图像瓷砖中的歧视性图像特征来运行。瓷砖分为形态相似的簇,构成了组织形态表型的库,从而揭示了通过炎症和反应性表型从良性到恶性组织的轨迹。这些簇具有独特的特征,可以使用正交方法来识别组织学,分子和临床表型。应用于肺癌组织,我们表明它们与患者的生存紧密保持一致,组织病理学识别的肿瘤类型和生长模式以及免疫表型的转录组量度。然后,我们证明了这些特性在一项多癌研究中维持。这些结果表明,在自然选择下出现的群集代表了肿瘤生长的复发宿主反应和模式。代码,预训练的模型,学习的嵌入和文档可通过https://github.com/adalbertocq/thistomorphologicy-phenotype-phenotype-learning获得。

Definitive cancer diagnosis and management depend upon the extraction of information from microscopy images by pathologists. These images contain complex information requiring time-consuming expert human interpretation that is prone to human bias. Supervised deep learning approaches have proven powerful for classification tasks, but they are inherently limited by the cost and quality of annotations used for training these models. To address this limitation of supervised methods, we developed Histomorphological Phenotype Learning (HPL), a fully blue{self-}supervised methodology that requires no expert labels or annotations and operates via the automatic discovery of discriminatory image features in small image tiles. Tiles are grouped into morphologically similar clusters which constitute a library of histomorphological phenotypes, revealing trajectories from benign to malignant tissue via inflammatory and reactive phenotypes. These clusters have distinct features which can be identified using orthogonal methods, linking histologic, molecular and clinical phenotypes. Applied to lung cancer tissues, we show that they align closely with patient survival, with histopathologically recognised tumor types and growth patterns, and with transcriptomic measures of immunophenotype. We then demonstrate that these properties are maintained in a multi-cancer study. These results show the clusters represent recurrent host responses and modes of tumor growth emerging under natural selection. Code, pre-trained models, learned embeddings, and documentation are available to the community at https://github.com/AdalbertoCq/Histomorphological-Phenotype-Learning

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源