论文标题
基于不确定性 - 自动模型的隐私和实用性保存数据类型意识转换
Uncertainty-Autoencoder-Based Privacy and Utility Preserving Data Type Conscious Transformation
论文作者
论文摘要
我们提出了一个对抗性学习框架,该框架在两种类型的条件下涉及隐私 - 实用性权衡问题:数据类型无知和数据类型。在数据类型的意识条件下,隐私机制提供了一个分类特征的单次编码,完全代表一个类,而在数据类型的无知条件下,分类变量由分数集合表示,每个类别为每个类。我们使用由生成器和鉴别器组成的神经网络体系结构,其中发电机由编码器对配对组成,鉴别器由对手和公用事业提供商组成。与以前的研究不同,考虑这种体系结构,该体系结构利用自动编码器(AE)而不引入任何随机性或各变化自动编码器(VAE),基于学习的潜在表示,然后将其迫使我们提出的随机性介绍了高斯的限制,仅限制了高斯的假设,仅限制了高斯的假设,仅限制了限制潜在的限制。私有数据。我们在不同数据集上测试我们的框架:MNIST,FashionMnist,UCI成人和美国人口普查数据,提供了广泛的私人和实用性属性。我们同时使用多个对手来测试我们的隐私机制 - 有些是根据地面真相数据训练的,有些是通过我们的隐私机制生成的扰动数据训练的。通过比较分析,我们的结果证明了在类似的数据类型无知条件下的现有作品比现有作品更好的隐私和效用保证,即使后者在其最初的限制性单对手模型下也被考虑。
We propose an adversarial learning framework that deals with the privacy-utility tradeoff problem under two types of conditions: data-type ignorant, and data-type aware. Under data-type aware conditions, the privacy mechanism provides a one-hot encoding of categorical features, representing exactly one class, while under data-type ignorant conditions the categorical variables are represented by a collection of scores, one for each class. We use a neural network architecture consisting of a generator and a discriminator, where the generator consists of an encoder-decoder pair, and the discriminator consists of an adversary and a utility provider. Unlike previous research considering this kind of architecture, which leverages autoencoders (AEs) without introducing any randomness, or variational autoencoders (VAEs) based on learning latent representations which are then forced into a Gaussian assumption, our proposed technique introduces randomness and removes the Gaussian assumption restriction on the latent variables, only focusing on the end-to-end stochastic mapping of the input to privatized data. We test our framework on different datasets: MNIST, FashionMNIST, UCI Adult, and US Census Demographic Data, providing a wide range of possible private and utility attributes. We use multiple adversaries simultaneously to test our privacy mechanism -- some trained from the ground truth data and some trained from the perturbed data generated by our privacy mechanism. Through comparative analysis, our results demonstrate better privacy and utility guarantees than the existing works under similar, data-type ignorant conditions, even when the latter are considered under their original restrictive single-adversary model.